A | |
| all_constructors [Smt.Type] | all_constructors () returns a list of all the defined constructors.
|
| assign_constr [Smt.Variant] | assign_constr s cstr will add the constraint that the constructor
cstr must be in the type of s
|
| assign_var [Smt.Variant] | assign_var x y will add the constraint that the type of y is a
subtype of x (use this function when x := y appear in your
program
|
| assume [Smt.Solver] | assume ~profiling:b f id adds the formula f to the context of the
solver with idetifier id.
|
C | |
| check [Smt.Solver] | check () runs Alt-Ergo Zero on its context.
|
| clear [Smt.Solver] | clear () clears the context of the solver.
|
| close [Smt.Variant] | close () will compute the smallest type possible for each symbol.
|
| compare [Hstring] | compares x y returns 0 if x and y are equal, and is unspecified
otherwise but provides a total ordering on hash-consed strings.
|
| compare_list [Hstring] | compare_list l1 l2 returns 0 if and only if l1 is equal to l2.
|
| constructors [Smt.Type] | constructors ty returns the list of constructors of ty when type is
an enumerated data-type, otherwise returns [].
|
D | |
| declare [Smt.Symbol] | declare s [arg_1; ... ; arg_n] out declares a new function
symbol with type (arg_1, ... , arg_n) -> out
|
| declare [Smt.Type] | declare n cstrs declares a new enumerated data-type with
name n and constructors cstrs., declare n [] declares a new abstract type with name n.
|
| declared [Smt.Symbol] | declared x is true if x is already declared.
|
E | |
| empty [Hstring] |
the empty (
"") hash-consed string.
|
| entails [Smt.Solver] | entails ~id f returns true if the context of the solver entails
the formula f.
|
| equal [Hstring] | equal x y returns true if x and y are the same hash-consed string
(constant time).
|
F | |
| f_false [Smt.Formula] |
The formula which represents
false
|
| f_true [Smt.Formula] |
The formula which represents
true
|
G | |
| get_calls [Smt.Solver] | get_calls () returns the cumulated number of calls to Smt.Solver.check.
|
| get_time [Smt.Solver] | get_time () returns the cumulated time spent in the solver in seconds.
|
| get_variants [Smt.Variant] | get_variants s returns a set of constructors, which is the refined
type of s.
|
H | |
| has_abstract_type [Smt.Symbol] | has_abstract_type x is true if the type of x is abstract.
|
| has_type_proc [Smt.Symbol] | has_type_proc x is true if x has the type of a process
identifier.
|
| hash [Hstring] | hash x returns the integer (hash) associated to x.
|
I | |
| init [Smt.Variant] | init l where l is a list of pairs (s, ty) initializes the
type (and associated constructors) of each s to its original type ty.
|
| is_int [Smt.Term] | is_int x is true if the term x has type int
|
| is_real [Smt.Term] | is_real x is true if the term x has type real
|
L | |
| list_assoc [Hstring] | list_assoc x l returns the element associated with x in the list of
pairs l.
|
| list_mem [Hstring] | list_mem x l is true if and only if x is equal to an element of l.
|
| list_mem_assoc [Hstring] |
Same as
Hstring.list_assoc, but simply returns true if a binding exists, and
false if no bindings exist for the given key.
|
| list_mem_couple [Hstring] | list_mem_couple (x,y) l is true if and only if (x,y) is equal to an
element of l.
|
M | |
| make [Hstring] | make s builds ans returns a hash-consed string from s.
|
| make [Smt.Formula] | make cmb [f_1; ...; f_n] creates the formula
(f_1 <cmb> ... <cmb> f_n).
|
| make_app [Smt.Term] | make_app f l creates the application of function symbol f to a list
of terms l.
|
| make_arith [Smt.Term] | make_arith op t1 t2 creates the term t1 <op> t2.
|
| make_cnf [Smt.Formula] | make_cnf f returns a conjunctive normal form of f under the form: a
list (which is a conjunction) of lists (which are disjunctions) of
literals.
|
| make_int [Smt.Term] | make_int n creates an integer constant of value n.
|
| make_ite [Smt.Term] | make_ite f t1 t2 creates the term if f then t1 else t2.
|
| make_lit [Smt.Formula] | make_lit cmp [t1; t2] creates the literal (t1 <cmp> t2).
|
| make_real [Smt.Term] | make_real n creates an real constant of value n.
|
P | |
| print [Hstring] |
Prints a list of hash-consed strings on a formatter.
|
| print [Smt.Formula] | print fmt f prints the formula on the formatter fmt.
|
| print [Smt.Variant] | print () will output the computed refined types on std_err.
|
R | |
| restore_state [Smt.Solver] | restore_state s restores a previously saved state s.
|
S | |
| save_state [Smt.Solver] | save_state () returns a copy of the current state of the solver.
|
| set_cc [Smt] |
set_cc
false deactivates congruence closure algorithm
(true by default).
|
T | |
| t_false [Smt.Term] | t_false is the boolean term false
|
| t_true [Smt.Term] | t_true is the boolean term true
|
| type_bool [Smt.Type] |
The type of booleans
|
| type_int [Smt.Type] |
The type of integers
|
| type_of [Smt.Symbol] | type_of x returns the type of x.
|
| type_proc [Smt.Type] |
The type processes (identifiers)
|
| type_real [Smt.Type] |
The type of reals
|
V | |
| view [Hstring] | view hs returns the string corresponding to hs.
|