open Base_types type lit = Lit.t type term = Term.t module Arg = struct type nonrec rule = unit type nonrec step_id = unit module Step_vec = Vec_unit let dummy_step_id = () end include Sidekick_proof_trace_dummy.Make (Arg) type rule = A.rule type step_id = A.step_id let create () : t = () let with_proof _ _ = () module Rule_sat = struct type nonrec rule = rule type nonrec step_id = step_id type nonrec lit = lit let sat_redundant_clause _ ~hyps:_ = () let sat_input_clause _ = () let sat_unsat_core _ = () end module Rule_core = struct type nonrec rule = rule type nonrec step_id = step_id type nonrec lit = lit type nonrec term = term let define_term _ _ = () let proof_p1 _ _ = () let proof_r1 _ _ = () let proof_res ~pivot:_ _ _ = () let lemma_preprocess _ _ ~using:_ = () let lemma_true _ = () let lemma_cc _ = () let lemma_rw_clause _ ~res:_ ~using:_ = () let with_defs _ _ = () end let lemma_lra _ = () module Rule_bool = struct type nonrec rule = rule type nonrec lit = lit let lemma_bool_tauto _ = () let lemma_bool_c _ _ = () let lemma_bool_equiv _ _ = () let lemma_ite_true ~ite:_ = () let lemma_ite_false ~ite:_ = () end module Rule_data = struct type nonrec rule = rule type nonrec lit = lit type nonrec term = term let lemma_isa_cstor ~cstor_t:_ _ = () let lemma_select_cstor ~cstor_t:_ _ = () let lemma_isa_split _ _ = () let lemma_isa_sel _ = () let lemma_isa_disj _ _ = () let lemma_cstor_inj _ _ _ = () let lemma_cstor_distinct _ _ = () let lemma_acyclicity _ = () end