open Base_types (* we store steps as binary chunks *) module CS = Chunk_stack module Config = struct type storage = | No_store | In_memory | On_disk_at of string let pp_storage out = function | No_store -> Fmt.string out "no-store" | In_memory -> Fmt.string out "in-memory" | On_disk_at file -> Fmt.fprintf out "(on-file :at %S)" file type t = { enabled: bool; storage: storage; } let default = { enabled=true; storage=In_memory } let empty = { enabled=false; storage=No_store } let pp out (self:t) = let { enabled; storage } = self in Fmt.fprintf out "(@[config@ :enabled %B@ :storage %a@])" enabled pp_storage storage let enable b self = {self with enabled=b} let store_in_memory self = {self with storage=In_memory} let store_on_disk_at file self = {self with storage=On_disk_at file} let no_store self = {self with storage=No_store} end (* where we store steps *) module Storage = struct type t = | No_store | In_memory of CS.Buf.t | On_disk of string * out_channel let pp out = function | No_store -> Fmt.string out "no-store" | In_memory _ -> Fmt.string out "in-memory" | On_disk (file,_) -> Fmt.fprintf out "(on-file %S)" file end (* a step is just a unique integer ID. The actual step is stored in the chunk_stack. *) type proof_step = Proof_ser.ID.t type term_id = Proof_ser.ID.t type lit = Lit.t type term = Term.t type t = { mutable enabled : bool; config: Config.t; buf: Buffer.t; mutable storage: Storage.t; mutable dispose: unit -> unit; mutable steps_writer: CS.Writer.t; mutable next_id: int; map_term: term_id Term.Tbl.t; (* term -> proof ID *) map_fun: term_id Fun.Tbl.t; } type proof_rule = t -> proof_step module Step_vec = struct type elt=proof_step include VecI32 end let disable (self:t) : unit = self.enabled <- false; self.storage <- Storage.No_store; self.dispose(); self.steps_writer <- CS.Writer.dummy; () let nop_ _ = () let create ?(config=Config.default) () : t = (* acquire resources for logging *) let storage, steps_writer, dispose = match config.Config.storage with | Config.No_store -> Storage.No_store, CS.Writer.dummy, nop_ | Config.In_memory -> let buf = CS.Buf.create ~cap:256 () in Storage.In_memory buf, CS.Writer.into_buf buf, nop_ | Config.On_disk_at file -> let oc = open_out_gen [Open_creat; Open_wronly; Open_trunc; Open_binary] 0o644 file in let w = CS.Writer.into_channel oc in let dispose () = close_out oc in Storage.On_disk (file, oc), w, dispose in { enabled=config.Config.enabled; config; next_id=1; buf=Buffer.create 1_024; map_term=Term.Tbl.create 32; map_fun=Fun.Tbl.create 32; steps_writer; storage; dispose; } let iter_chunks_ (r:CS.Reader.t) k = let rec loop () = CS.Reader.next r ~finish:nop_ ~yield:(fun b i _len -> let step = Proof_ser.Bare.of_bytes_exn Proof_ser.Step.decode b ~off:i in k step; loop () ) in loop () let iter_steps_backward (self:t) : Proof_ser.Step.t Iter.t = fun yield -> begin match self.storage with | Storage.No_store -> () | Storage.In_memory buf -> let r = CS.Reader.from_buf buf in iter_chunks_ r yield | Storage.On_disk (file, _oc) -> let ic = open_in file in let iter = CS.Reader.from_channel_backward ~close_at_end:true ic in iter_chunks_ iter yield end let dummy_step : proof_step = Int32.min_int let[@inline] enabled (self:t) = self.enabled (* allocate a unique ID to refer to an event in the trace *) let[@inline] alloc_id (self:t) : Proof_ser.ID.t = let n = self.next_id in self.next_id <- 1 + self.next_id; Int32.of_int n (* emit a proof step *) let emit_step_ (self:t) (step:Proof_ser.Step.t) : unit = if enabled self then ( Buffer.clear self.buf; Proof_ser.Step.encode self.buf step; Chunk_stack.Writer.add_buffer self.steps_writer self.buf; ) let emit_fun_ (self:t) (f:Fun.t) : term_id = try Fun.Tbl.find self.map_fun f with Not_found -> let id = alloc_id self in Fun.Tbl.add self.map_fun f id; let f_name = ID.to_string (Fun.id f) in emit_step_ self Proof_ser.({ Step.id; view=Fun_decl {Fun_decl.f=f_name}}); id let rec emit_term_ (self:t) (t:Term.t) : term_id = try Term.Tbl.find self.map_term t with Not_found -> let view = match Term_cell.map (emit_term_ self) @@ Term.view t with | Term_cell.Bool b -> Proof_ser.Step_view.Expr_bool {Proof_ser.Expr_bool.b} | Term_cell.Ite (a,b,c) -> Proof_ser.Step_view.Expr_if {Proof_ser.Expr_if.cond=a; then_=b; else_=c} | Term_cell.Not a -> Proof_ser.Step_view.Expr_not {Proof_ser.Expr_not.f=a} | Term_cell.App_fun (f, arr) -> let f = emit_fun_ self f in Proof_ser.Step_view.Expr_app {Proof_ser.Expr_app.f; args=(arr:_ IArray.t:> _ array)} | Term_cell.Eq (a, b) -> Proof_ser.Step_view.Expr_eq {Proof_ser.Expr_eq.lhs=a; rhs=b} | LRA _ -> assert false (* TODO *) in let id = alloc_id self in emit_step_ self Proof_ser.({id; view}); id let emit_lit_ (self:t) (lit:Lit.t) : term_id = let sign = Lit.sign lit in let t = emit_term_ self (Lit.term lit) in if sign then t else Int32.neg t let emit_redundant_clause _ ~hyps:_ _ = dummy_step let emit_input_clause (lits:Lit.t Iter.t) (self:t) = if enabled self then ( let lits = Iter.map (emit_lit_ self) lits |> Iter.to_array in let id = alloc_id self in emit_step_ self ( Proof_ser.({Step.id; view=Step_view.Step_input {Step_input.c={Clause.lits}}}) ); id ) else dummy_step let define_term _ _ _ = dummy_step let proof_p1 _ _ (_pr:t) = dummy_step let lemma_preprocess _ _ ~using:_ (_pr:t) = dummy_step let lemma_true _ _ = dummy_step let lemma_cc _ _ = dummy_step let lemma_rw_clause _ ~using:_ (_pr:t) = dummy_step let with_defs _ _ (_pr:t) = dummy_step let del_clause _ _ (_pr:t) = () let emit_unsat_core _ (_pr:t) = dummy_step let emit_unsat _ _ = () let lemma_lra _ _ = dummy_step let lemma_bool_tauto _ _ = dummy_step let lemma_bool_c _ _ _ = dummy_step let lemma_bool_equiv _ _ _ = dummy_step let lemma_ite_true ~ite:_ _ = dummy_step let lemma_ite_false ~ite:_ _ = dummy_step let lemma_isa_cstor ~cstor_t:_ _ (_pr:t) = dummy_step let lemma_select_cstor ~cstor_t:_ _ (_pr:t) = dummy_step let lemma_isa_split _ _ (_pr:t) = dummy_step let lemma_isa_sel _ (_pr:t) = dummy_step let lemma_isa_disj _ _ (_pr:t) = dummy_step let lemma_cstor_inj _ _ _ (_pr:t) = dummy_step let lemma_cstor_distinct _ _ (_pr:t) = dummy_step let lemma_acyclicity _ (_pr:t) = dummy_step