(** {1 simple sudoku solver} *) module Fmt = CCFormat module Vec = Sidekick_util.Vec module Log = Sidekick_util.Log module Profile = Sidekick_util.Profile let errorf msg = Fmt.kasprintf failwith msg module Cell : sig type t = private int val equal : t -> t -> bool val neq : t -> t -> bool val hash : t -> int val empty : t val is_empty : t -> bool val is_full : t -> bool val make : int -> t val pp : t Fmt.printer end = struct type t = int let empty = 0 let[@inline] make i = assert (i >= 0 && i <= 9); i let[@inline] is_empty x = x = 0 let[@inline] is_full x = x > 0 let hash = CCHash.int let[@inline] equal (a:t) b = a=b let[@inline] neq (a:t) b = a<>b let pp out i = if i=0 then Fmt.char out '.' else Fmt.int out i end module Grid : sig type t val get : t -> int -> int -> Cell.t val set : t -> int -> int -> Cell.t -> t (** A set of related cells *) type set = (int*int*Cell.t) Iter.t val rows : t -> set Iter.t val cols : t -> set Iter.t val squares : t -> set Iter.t val all_cells : t -> (int*int*Cell.t) Iter.t val parse : string -> t val is_full : t -> bool val is_valid : t -> bool val matches : pat:t -> t -> bool val pp : t Fmt.printer end = struct type t = Cell.t array let[@inline] get (s:t) i j = s.(i*9 + j) let[@inline] set (s:t) i j n = let s' = Array.copy s in s'.(i*9 + j) <- n; s' (** A set of related cells *) type set = (int*int*Cell.t) Iter.t open Iter.Infix let all_cells (g:t) = 0 -- 8 >>= fun i -> 0 -- 8 >|= fun j -> (i,j,get g i j) let rows (g:t) = 0 -- 8 >|= fun i -> ( 0 -- 8 >|= fun j -> (i,j,get g i j)) let cols g = 0 -- 8 >|= fun j -> ( 0 -- 8 >|= fun i -> (i,j,get g i j)) let squares g = 0 -- 2 >>= fun sq_i -> 0 -- 2 >|= fun sq_j -> ( 0 -- 2 >>= fun off_i -> 0 -- 2 >|= fun off_j -> let i = 3*sq_i + off_i in let j = 3*sq_j + off_j in (i,j,get g i j)) let is_full g = Array.for_all Cell.is_full g let is_valid g = let all_distinct (s:set) = (s >|= fun (_,_,c) -> c) |> Iter.diagonal |> Iter.for_all (fun (c1,c2) -> Cell.neq c1 c2) in Iter.for_all all_distinct @@ rows g && Iter.for_all all_distinct @@ cols g && Iter.for_all all_distinct @@ squares g let matches ~pat:g1 g2 : bool = all_cells g1 |> Iter.filter (fun (_,_,c) -> Cell.is_full c) |> Iter.for_all (fun (x,y,c) -> Cell.equal c @@ get g2 x y) let pp out g = Fmt.fprintf out "@["; Array.iteri (fun i n -> Cell.pp out n; if i mod 9 = 8 then Fmt.fprintf out "@,") g; Fmt.fprintf out "@]" let parse (s:string) : t = if String.length s < 81 then ( errorf "line is too short, expected 81 chars, not %d" (String.length s); ); let a = Array.make 81 Cell.empty in for i = 0 to 80 do let c = String.get s i in let n = if c = '.' then 0 else Char.code c - Char.code '0' in if n < 0 || n > 9 then errorf "invalid char %c" c; a.(i) <- Cell.make n done; a end module B_ref = Sidekick_util.Backtrackable_ref module Solver : sig type t val create : Grid.t -> t val solve : t -> Grid.t option end = struct open Sidekick_sat.Solver_intf (* formulas *) module F = struct type t = bool*int*int*Cell.t let equal (sign1,x1,y1,c1)(sign2,x2,y2,c2) = sign1=sign2 && x1=x2 && y1=y2 && Cell.equal c1 c2 let hash (sign,x,y,c) = CCHash.(combine4 (bool sign)(int x)(int y)(Cell.hash c)) let pp out (sign,x,y,c) = Fmt.fprintf out "[@[(%d,%d) %s %a@]]" x y (if sign then "=" else "!=") Cell.pp c let neg (sign,x,y,c) = (not sign,x,y,c) let norm_sign ((sign,_,_,_) as f) = if sign then f, true else neg f, false let make sign x y (c:Cell.t) : t = (sign,x,y,c) end type lit = F.t module Theory = struct type proof = unit type proof_step = unit module Lit = F type lit = Lit.t module Proof = Sidekick_sat.Proof_dummy.Make(Lit) type t = { grid: Grid.t B_ref.t; } let create g : t = {grid=B_ref.create g} let[@inline] grid self : Grid.t = B_ref.get self.grid let[@inline] set_grid self g : unit = B_ref.set self.grid g let push_level self = B_ref.push_level self.grid let pop_levels self n = B_ref.pop_levels self.grid n let pp_c_ = Fmt.(list ~sep:(return "@ ∨ ")) F.pp let[@inline] logs_conflict kind c : unit = Log.debugf 4 (fun k->k "(@[conflict.%s@ %a@])" kind pp_c_ c) (* check that all cells are full *) let check_full_ (self:t) (acts:(Lit.t,proof,proof_step) acts) : unit = Profile.with_ "check-full" @@ fun () -> let (module A) = acts in Grid.all_cells (grid self) (fun (x,y,c) -> if Cell.is_empty c then ( let c = CCList.init 9 (fun c -> F.make true x y (Cell.make (c+1))) in Log.debugf 4 (fun k->k "(@[add-clause@ %a@])" pp_c_ c); A.add_clause ~keep:true c (); )) (* check constraints *) let check_ (self:t) (acts:(Lit.t,proof,proof_step) acts) : unit = Profile.with_ "check-constraints" @@ fun () -> Log.debugf 4 (fun k->k "(@[sudoku.check@ @[:g %a@]@])" Grid.pp (B_ref.get self.grid)); let (module A) = acts in let[@inline] all_diff kind f = let pairs = f (grid self) |> Iter.flat_map (fun set -> set |> Iter.filter (fun (_,_,c) -> Cell.is_full c) |> Iter.diagonal) in pairs (fun ((x1,y1,c1),(x2,y2,c2)) -> if Cell.equal c1 c2 then ( assert (x1<>x2 || y1<>y2); let c = [F.make false x1 y1 c1; F.make false x2 y2 c2] in logs_conflict ("all-diff." ^ kind) c; A.raise_conflict c () )) in all_diff "rows" Grid.rows; all_diff "cols" Grid.cols; all_diff "squares" Grid.squares; () let trail_ (acts:(Lit.t,proof,proof_step) acts) = let (module A) = acts in A.iter_assumptions (* update current grid with the given slice *) let add_slice (self:t) (acts:(Lit.t,proof,proof_step) acts) : unit = let (module A) = acts in trail_ acts (function | false,_,_,_ -> () | true,x,y,c -> assert (Cell.is_full c); let grid = grid self in let c' = Grid.get grid x y in if Cell.is_empty c' then ( set_grid self (Grid.set grid x y c); ) else if Cell.neq c c' then ( (* conflict: at most one value *) let c = [F.make false x y c; F.make false x y c'] in logs_conflict "at-most-one" c; A.raise_conflict c () ) ) let partial_check (self:t) acts : unit = Profile.with_ "partial-check" @@ fun () -> Log.debugf 4 (fun k->k "(@[sudoku.partial-check@ :trail [@[%a@]]@])" (Fmt.list F.pp) (trail_ acts |> Iter.to_list)); add_slice self acts; check_ self acts let final_check (self:t) acts : unit = Profile.with_ "final-check" @@ fun () -> Log.debugf 4 (fun k->k "(@[sudoku.final-check@])"); check_full_ self acts; check_ self acts end module S = Sidekick_sat.Make_cdcl_t(Theory) type t = { grid0: Grid.t; solver: S.t; } let solve (self:t) : _ option = Profile.with_ "sudoku.solve" @@ fun () -> let assumptions = Grid.all_cells self.grid0 |> Iter.filter (fun (_,_,c) -> Cell.is_full c) |> Iter.map (fun (x,y,c) -> F.make true x y c) |> Iter.to_rev_list in Log.debugf 2 (fun k->k "(@[sudoku.solve@ :assumptions %a@])" (Fmt.Dump.list F.pp) assumptions); let r = match S.solve self.solver ~assumptions with | S.Sat _ -> Some (Theory.grid (S.theory self.solver)) | S.Unsat _ -> None in (* TODO: print some stats *) r let create g : t = { solver=S.create ~proof:() (Theory.create g); grid0=g } end let solve_grid (g:Grid.t) : Grid.t option = let s = Solver.create g in Solver.solve s module type CHRONO = sig val pp_elapsed : Fmt.formatter -> unit end let chrono ~pp_time : (module CHRONO) = let module M = struct let start = Sys.time() let pp_elapsed out = if pp_time then Fmt.fprintf out " (in %.3fs)" (Sys.time() -. start) end in (module M) let solve_file ~pp_time file = Profile.with_ "solve-file" @@ fun () -> let open (val chrono ~pp_time) in Format.printf "solve grids in file %S@." file; let grids = CCIO.with_in file CCIO.read_lines_l |> CCList.filter_map (fun s -> let s = String.trim s in if s="" then None else match Grid.parse s with | g -> Some g | exception e -> errorf "cannot parse sudoku %S: %s@." s (Printexc.to_string e)) in Format.printf "parsed %d grids%t@." (List.length grids) pp_elapsed; List.iter (fun g -> Format.printf "@[@,#########################@,@[<2>solve grid:@ %a@]@]@." Grid.pp g; let open (val chrono ~pp_time) in match solve_grid g with | None -> Format.printf "no solution%t@." pp_elapsed | Some g' when not @@ Grid.is_full g' -> errorf "grid %a@ is not full" Grid.pp g' | Some g' when not @@ Grid.is_valid g' -> errorf "grid %a@ is not valid" Grid.pp g' | Some g' when not @@ Grid.matches ~pat:g g' -> errorf "grid %a@ @[<2>does not match original@ %a@]" Grid.pp g' Grid.pp g | Some g' -> Format.printf "@[@[<2>solution%t:@ %a@]@,###################@]@." pp_elapsed Grid.pp g') grids; Format.printf "@.solved %d grids%t@." (List.length grids) pp_elapsed; () let () = Sidekick_tef.with_setup @@ fun () -> Fmt.set_color_default true; let files = ref [] in let debug = ref 0 in let pp_time = ref true in let opts = [ "--debug", Arg.Set_int debug, " debug"; "-d", Arg.Set_int debug, " debug"; "--no-time", Arg.Clear pp_time, " do not print solve time"; ] |> Arg.align in Arg.parse opts (fun f -> files := f :: !files) "sudoku_solve [options] "; Log.set_debug !debug; try List.iter (fun f -> solve_file ~pp_time:!pp_time f) !files; with | Failure msg | Invalid_argument msg -> Format.printf "@{Error@}:@.%s@." msg; exit 1