type res = | Sat | Unsat module type TERM = CC_types.TERM module type S = sig type term type fun_ type term_state type t val create : term_state -> t val add_lit : t -> term -> bool -> unit val distinct : t -> term list -> unit val check : t -> res end module Make(A: TERM) = struct open CC_types module Fun = A.Fun module T = A.Term type fun_ = A.Fun.t type term = T.t type term_state = A.Term.state module T_tbl = CCHashtbl.Make(T) type node = { n_t: term; mutable n_next: node; (* next in class *) mutable n_size: int; (* size of parent list *) mutable n_parents: node list; mutable n_root: node; } type signature = (fun_, node, node list) view module Node = struct type t = node let[@inline] equal (n1:t) n2 = T.equal n1.n_t n2.n_t let[@inline] hash (n:t) = T.hash n.n_t let[@inline] size (n:t) = n.n_size let pp out n = T.pp out n.n_t let add_parent (self:t) ~p : unit = self.n_parents <- p :: self.n_parents; self.n_size <- 1 + self.n_size; () let make (t:T.t) : t = let rec n = { n_t=t; n_size=0; n_next=n; n_parents=[]; n_root=n; } in n (* iterate over the class *) let iter_cls (n0:t) f : unit = let rec aux n = f n; let n' = n.n_next in if equal n' n0 then () else aux n' in aux n0 end module Signature = struct type t = signature let equal (s1:t) s2 : bool = match s1, s2 with | Bool b1, Bool b2 -> b1=b2 | App_fun (f1,[]), App_fun (f2,[]) -> Fun.equal f1 f2 | App_fun (f1,l1), App_fun (f2,l2) -> Fun.equal f1 f2 && CCList.equal Node.equal l1 l2 | App_ho (f1,l1), App_ho (f2,l2) -> Node.equal f1 f2 && CCList.equal Node.equal l1 l2 | Not n1, Not n2 -> Node.equal n1 n2 | If (a1,b1,c1), If (a2,b2,c2) -> Node.equal a1 a2 && Node.equal b1 b2 && Node.equal c1 c2 | Eq (a1,b1), Eq (a2,b2) -> Node.equal a1 a2 && Node.equal b1 b2 | Opaque u1, Opaque u2 -> Node.equal u1 u2 | Bool _, _ | App_fun _, _ | App_ho _, _ | If _, _ | Eq _, _ | Opaque _, _ | Not _, _ -> false let hash (s:t) : int = let module H = CCHash in match s with | Bool b -> H.combine2 10 (H.bool b) | App_fun (f, l) -> H.combine3 20 (Fun.hash f) (H.list Node.hash l) | App_ho (f, l) -> H.combine3 30 (Node.hash f) (H.list Node.hash l) | Eq (a,b) -> H.combine3 40 (Node.hash a) (Node.hash b) | Opaque u -> H.combine2 50 (Node.hash u) | If (a,b,c) -> H.combine4 60 (Node.hash a)(Node.hash b)(Node.hash c) | Not u -> H.combine2 70 (Node.hash u) let pp out = function | Bool b -> Fmt.bool out b | App_fun (f, []) -> Fun.pp out f | App_fun (f, l) -> Fmt.fprintf out "(@[%a@ %a@])" Fun.pp f (Util.pp_list Node.pp) l | App_ho (f, []) -> Node.pp out f | App_ho (f, l) -> Fmt.fprintf out "(@[%a@ %a@])" Node.pp f (Util.pp_list Node.pp) l | Opaque t -> Node.pp out t | Not u -> Fmt.fprintf out "(@[not@ %a@])" Node.pp u | Eq (a,b) -> Fmt.fprintf out "(@[=@ %a@ %a@])" Node.pp a Node.pp b | If (a,b,c) -> Fmt.fprintf out "(@[ite@ %a@ %a@ %a@])" Node.pp a Node.pp b Node.pp c end module Sig_tbl = CCHashtbl.Make(Signature) type t = { mutable ok: bool; (* unsat? *) tbl: node T_tbl.t; sig_tbl: node Sig_tbl.t; combine: (node * node) Vec.t; pending: node Vec.t; (* refresh signature *) distinct: node list ref Vec.t; (* disjoint sets *) true_: node; false_: node; } let create tst : t = let true_ = T.bool tst true in let false_ = T.bool tst false in let self = { ok=true; tbl= T_tbl.create 128; sig_tbl=Sig_tbl.create 128; combine=Vec.create(); pending=Vec.create(); distinct=Vec.create(); true_=Node.make true_; false_=Node.make false_; } in T_tbl.add self.tbl true_ self.true_; T_tbl.add self.tbl false_ self.false_; self let sub_ t k : unit = match T.cc_view t with | Bool _ | Opaque _ -> () | App_fun (_, args) -> args k | App_ho (f, args) -> k f; args k | Eq (a,b) -> k a; k b | Not u -> k u | If(a,b,c) -> k a; k b; k c let rec add_t (self:t) (t:term) : node = match T_tbl.find self.tbl t with | n -> n | exception Not_found -> let node = Node.make t in (* add sub-terms, and add [t] to their parent list *) sub_ t (fun u -> let n_u = add_t self u in Node.add_parent n_u ~p:node); T_tbl.add self.tbl t node; (* need to compute signature *) Vec.push self.pending node; node (* find representative *) let[@inline] find_ (n:node) : node = let r = n.n_root in assert (Node.equal r.n_root r); r let find_t_ (self:t) (t:term): node = let n = try T_tbl.find self.tbl t with Not_found -> Error.errorf "minicc.find_t: no node for %a" T.pp t in find_ n (* does this list contain a duplicate? *) let has_dups (l:node list) : bool = Iter.diagonal (Iter.of_list l) |> Iter.exists (fun (n1,n2) -> Node.equal n1 n2) exception E_unsat let check_distinct_ self : unit = Vec.iter (fun r -> r := List.map find_ !r; if has_dups !r then raise_notrace E_unsat) self.distinct let compute_sig (self:t) (n:node) : Signature.t option = let[@inline] return x = Some x in match T.cc_view n.n_t with | Bool _ | Opaque _ -> None | Eq (a,b) -> let a = find_t_ self a in let b = find_t_ self b in return @@ Eq (a,b) | Not u -> return @@ Not (find_t_ self u) | App_fun (f, args) -> let args = args |> Iter.map (find_t_ self) |> Iter.to_list in if args<>[] then ( return @@ App_fun (f, args) ) else None | App_ho (f, args) -> let args = args |> Iter.map (find_t_ self) |> Iter.to_list in return @@ App_ho (find_t_ self f, args) | If (a,b,c) -> return @@ If(find_t_ self a, find_t_ self b, find_t_ self c) let update_sig_ (self:t) (n: node) : unit = match compute_sig self n with | None -> () | Some (Eq (a,b)) -> if Node.equal a b then ( (* reduce to [true] *) let n2 = self.true_ in Log.debugf 5 (fun k->k "(@[minicc.congruence-by-eq@ %a@ %a@])" Node.pp n Node.pp n2); Vec.push self.combine (n,n2) ) | Some s -> Log.debugf 5 (fun k->k "(@[minicc.update-sig@ %a@])" Signature.pp s); match Sig_tbl.find self.sig_tbl s with | n2 when Node.equal n n2 -> () | n2 -> (* collision, merge *) Log.debugf 5 (fun k->k "(@[minicc.congruence-by-sig@ %a@ %a@])" Node.pp n Node.pp n2); Vec.push self.combine (n,n2) | exception Not_found -> Sig_tbl.add self.sig_tbl s n let[@inline] is_bool self n = Node.equal self.true_ n || Node.equal self.false_ n (* merge the two classes *) let merge_ self (n1,n2) : unit = let n1 = find_ n1 in let n2 = find_ n2 in if not @@ Node.equal n1 n2 then ( (* merge into largest class, or into a boolean *) let n1, n2 = if is_bool self n1 then n1, n2 else if is_bool self n2 then n2, n1 else if Node.size n1 > Node.size n2 then n1, n2 else n2, n1 in Log.debugf 5 (fun k->k "(@[minicc.merge@ :into %a@ %a@])" Node.pp n1 Node.pp n2); if is_bool self n1 && is_bool self n2 then ( Log.debugf 5 (fun k->k "(minicc.conflict.merge-true-false)"); self.ok <- false; raise E_unsat ); List.iter (Vec.push self.pending) n2.n_parents; (* will change signature *) (* merge parent lists *) n1.n_parents <- List.rev_append n2.n_parents n1.n_parents; n1.n_size <- n2.n_size + n1.n_size; (* update root pointer in [n2.class] *) Node.iter_cls n2 (fun n -> n.n_root <- n1); ) let check_ok_ self = if not self.ok then raise_notrace E_unsat (* fixpoint of the congruence closure *) let fixpoint (self:t) : unit = while not (Vec.is_empty self.pending && Vec.is_empty self.combine) do check_ok_ self; while not @@ Vec.is_empty self.pending do update_sig_ self @@ Vec.pop self.pending done; while not @@ Vec.is_empty self.combine do merge_ self @@ Vec.pop self.combine done done; check_distinct_ self (* API *) let add_lit (self:t) (p:T.t) (sign:bool) : unit = match T.cc_view p with | Eq (t1,t2) when sign -> let n1 = add_t self t1 in let n2 = add_t self t2 in Vec.push self.combine (n1,n2) | _ -> (* just merge with true/false *) let n = add_t self p in let n2 = if sign then self.true_ else self.false_ in Vec.push self.combine (n,n2) let distinct (self:t) l = begin match l with | [] | [_] -> invalid_arg "distinct: need at least 2 terms" | _ -> () end; let l = List.map (add_t self) l in Vec.push self.distinct (ref l) let check (self:t) : res = try fixpoint self; Sat with E_unsat -> self.ok <- false; Unsat end