sidekick/src/th-bool-dyn/Sidekick_th_bool_dyn.ml
Simon Cruanes 5feb5d8e73
refactor: new API for combination, with theories claiming terms
interface variables are terms claimed by >= 2 theories. Theories now
have a unique ID attributed at their creation.
2022-08-27 22:51:16 -04:00

378 lines
12 KiB
OCaml

open Sidekick_core
module Intf = Intf
open Intf
module SI = SMT.Solver_internal
module Proof_rules = Proof_rules
module T = Term
module type ARG = Intf.ARG
(** Theory with dynamic reduction to clauses *)
module Make (A : ARG) : sig
val theory : SMT.theory
end = struct
(* TODO (long term): relevancy propagation *)
type term = T.t
type state = {
tst: T.store;
expanded: unit Lit.Tbl.t; (* set of literals already expanded *)
n_simplify: int Stat.counter;
n_expanded: int Stat.counter;
n_clauses: int Stat.counter;
}
let create ~stat tst : state =
{
tst;
expanded = Lit.Tbl.create 256;
n_simplify = Stat.mk_int stat "th.bool.simplified";
n_expanded = Stat.mk_int stat "th.bool.expanded";
n_clauses = Stat.mk_int stat "th.bool.clauses";
}
let[@inline] not_ tst t = A.mk_bool tst (B_not t)
let[@inline] eq tst a b = A.mk_bool tst (B_eq (a, b))
let pp_c_ = Fmt.Dump.list Lit.pp
let is_true t =
match T.as_bool_val t with
| Some true -> true
| _ -> false
let is_false t =
match T.as_bool_val t with
| Some false -> true
| _ -> false
let unfold_and t : T.Set.t =
let rec aux acc t =
match A.view_as_bool t with
| B_and l -> List.fold_left aux acc l
| _ -> T.Set.add t acc
in
aux T.Set.empty t
let unfold_or t : T.Set.t =
let rec aux acc t =
match A.view_as_bool t with
| B_or l -> List.fold_left aux acc l
| _ -> T.Set.add t acc
in
aux T.Set.empty t
(* TODO: share this with th-bool-static by way of a library for
boolean simplification? (also handle one-point rule and the likes) *)
let simplify (self : state) (simp : Simplify.t) (t : T.t) :
(T.t * Proof_step.id Iter.t) option =
let tst = self.tst in
let proof = Simplify.proof simp in
let steps = ref [] in
let add_step_ s = steps := s :: !steps in
let mk_step_ r = Proof_trace.add_step proof r in
let add_step_eq a b ~using ~c0 : unit =
add_step_ @@ mk_step_
@@ fun () ->
Proof_core.lemma_rw_clause c0 ~using
~res:[ Lit.atom tst (A.mk_bool tst (B_eq (a, b))) ]
in
let[@inline] ret u =
Stat.incr self.n_simplify;
Some (u, Iter.of_list !steps)
in
(* proof is [t <=> u] *)
let ret_bequiv t1 u =
(add_step_ @@ mk_step_ @@ fun () -> Proof_rules.lemma_bool_equiv t1 u);
ret u
in
match A.view_as_bool t with
| B_bool _ -> None
| B_not u when is_true u -> ret_bequiv t (T.false_ tst)
| B_not u when is_false u -> ret_bequiv t (T.true_ tst)
| B_not _ -> None
| B_atom _ -> None
| B_and _ ->
let set = unfold_and t in
if T.Set.exists is_false set then
ret (T.false_ tst)
else if T.Set.for_all is_true set then
ret (T.true_ tst)
else (
let t' = A.mk_bool tst (B_and (T.Set.to_list set)) in
if not (T.equal t t') then
ret_bequiv t t'
else
None
)
| B_or _ ->
let set = unfold_or t in
if T.Set.exists is_true set then
ret (T.true_ tst)
else if T.Set.for_all is_false set then
ret (T.false_ tst)
else (
let t' = A.mk_bool tst (B_or (T.Set.to_list set)) in
if not (T.equal t t') then
ret_bequiv t t'
else
None
)
| B_imply (a, b) ->
if is_false a || is_true b then
ret (T.true_ tst)
else if is_true a && is_false b then
ret (T.false_ tst)
else
None
| B_ite (a, b, c) ->
(* directly simplify [a] so that maybe we never will simplify one
of the branches *)
let a, prf_a = Simplify.normalize_t simp a in
Option.iter add_step_ prf_a;
(match A.view_as_bool a with
| B_bool true ->
add_step_eq t b ~using:(Option.to_list prf_a)
~c0:(mk_step_ @@ fun () -> Proof_rules.lemma_ite_true ~ite:t);
ret b
| B_bool false ->
add_step_eq t c ~using:(Option.to_list prf_a)
~c0:(mk_step_ @@ fun () -> Proof_rules.lemma_ite_false ~ite:t);
ret c
| _ -> None)
| B_equiv (a, b) when is_true a -> ret_bequiv t b
| B_equiv (a, b) when is_false a -> ret_bequiv t (not_ tst b)
| B_equiv (a, b) when is_true b -> ret_bequiv t a
| B_equiv (a, b) when is_false b -> ret_bequiv t (not_ tst a)
| B_xor (a, b) when is_false a -> ret_bequiv t b
| B_xor (a, b) when is_true a -> ret_bequiv t (not_ tst b)
| B_xor (a, b) when is_false b -> ret_bequiv t a
| B_xor (a, b) when is_true b -> ret_bequiv t (not_ tst a)
| B_equiv _ | B_xor _ -> None
| B_eq (a, b) when T.equal a b -> ret_bequiv t (T.true_ tst)
| B_neq (a, b) when T.equal a b -> ret_bequiv t (T.true_ tst)
| B_eq _ | B_neq _ -> None
let[@inline] expanded self lit = Lit.Tbl.mem self.expanded lit
let set_expanded self lit : unit =
if not (expanded self lit) then (
Stat.incr self.n_expanded;
Lit.Tbl.add self.expanded lit ()
)
(* preprocess. *)
let preprocess_ (self : state) (_si : SI.t) (module PA : SI.PREPROCESS_ACTS)
(t : T.t) : unit =
Log.debugf 50 (fun k -> k "(@[th-bool.dny.preprocess@ %a@])" T.pp_debug t);
let[@inline] mk_step_ r = Proof_trace.add_step PA.proof r in
(match A.view_as_bool t with
| B_ite (a, b, c) ->
let lit_a = PA.mk_lit a in
Stat.incr self.n_clauses;
PA.add_clause
[ Lit.neg lit_a; PA.mk_lit (eq self.tst t b) ]
(mk_step_ @@ fun () -> Proof_rules.lemma_ite_true ~ite:t);
Stat.incr self.n_clauses;
PA.add_clause
[ lit_a; PA.mk_lit (eq self.tst t c) ]
(mk_step_ @@ fun () -> Proof_rules.lemma_ite_false ~ite:t)
| _ -> ());
()
let tseitin ~final:_ (self : state) solver (acts : SI.theory_actions)
(lit : Lit.t) (t : term) (v : term bool_view) : unit =
Log.debugf 50 (fun k -> k "(@[th-bool-dyn.tseitin@ %a@])" Lit.pp lit);
let add_axiom c pr : unit =
Log.debugf 50 (fun k ->
k "(@[th-bool-dyn.add-axiom@ %a@ :expanding %a@])" pp_c_ c Lit.pp lit);
Stat.incr self.n_clauses;
set_expanded self lit;
SI.add_clause_permanent solver acts c pr
in
let[@inline] mk_step_ r = Proof_trace.add_step (SI.proof solver) r in
(* handle boolean equality *)
let equiv_ ~is_xor a b : unit =
(* [a xor b] is [(¬a) = b] *)
let a =
if is_xor then
Lit.neg a
else
a
in
(* [lit => a<=> b],
[¬lit => a xor b] *)
add_axiom
[ Lit.neg lit; Lit.neg a; b ]
(if is_xor then
mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "xor-e+" [ t ]
else
mk_step_ @@ fun () ->
Proof_rules.lemma_bool_c "eq-e" [ t; Lit.term a ]);
add_axiom
[ Lit.neg lit; Lit.neg b; a ]
(if is_xor then
mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "xor-e-" [ t ]
else
mk_step_ @@ fun () ->
Proof_rules.lemma_bool_c "eq-e" [ t; Lit.term b ]);
add_axiom [ lit; a; b ]
(if is_xor then
mk_step_ @@ fun () ->
Proof_rules.lemma_bool_c "xor-i" [ t; Lit.term a ]
else
mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "eq-i+" [ t ]);
add_axiom
[ lit; Lit.neg a; Lit.neg b ]
(if is_xor then
mk_step_ @@ fun () ->
Proof_rules.lemma_bool_c "xor-i" [ t; Lit.term b ]
else
mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "eq-i-" [ t ])
in
match v with
| B_not _ -> ()
| B_atom _ -> () (* CC will manage *)
| B_bool true -> ()
| B_bool false ->
SI.add_clause_permanent solver acts
[ Lit.neg lit ]
(mk_step_ @@ fun () -> Proof_core.lemma_true (Lit.term lit))
| _ when expanded self lit -> () (* already done *)
| B_and l ->
let subs = List.map (Lit.atom self.tst) l in
if Lit.sign lit then
(* assert [(and …t_i) => t_i] *)
List.iter
(fun sub ->
add_axiom
[ Lit.neg lit; sub ]
( mk_step_ @@ fun () ->
Proof_rules.lemma_bool_c "and-e" [ t; Lit.term sub ] ))
subs
else (
(* axiom [¬(and …t_i)=> \/_i (¬ t_i)], only in final-check *)
let c = Lit.neg lit :: List.map Lit.neg subs in
add_axiom c
(mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "and-i" [ t ])
)
| B_or l ->
let subs = List.map (Lit.atom self.tst) l in
if not @@ Lit.sign lit then
(* propagate [¬sub_i \/ lit] *)
List.iter
(fun sub ->
add_axiom
[ Lit.neg lit; Lit.neg sub ]
( mk_step_ @@ fun () ->
Proof_rules.lemma_bool_c "or-i" [ t; Lit.term sub ] ))
subs
else (
(* axiom [lit => \/_i subs_i] *)
let c = Lit.neg lit :: subs in
add_axiom c (mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "or-e" [ t ])
)
| B_imply (a, b) ->
let a = Lit.atom self.tst a in
let b = Lit.atom self.tst b in
if Lit.sign lit then (
(* axiom [lit => a => b] *)
let c = [ Lit.neg lit; Lit.neg a; b ] in
add_axiom c
(mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "imp-e" [ t ])
) else if not @@ Lit.sign lit then (
(* propagate [¬ lit => ¬b] and [¬lit => a] *)
add_axiom
[ a; Lit.neg lit ]
( mk_step_ @@ fun () ->
Proof_rules.lemma_bool_c "imp-i" [ t; Lit.term a ] );
add_axiom
[ Lit.neg b; Lit.neg lit ]
( mk_step_ @@ fun () ->
Proof_rules.lemma_bool_c "imp-i" [ t; Lit.term b ] )
)
| B_ite (a, b, c) ->
assert (T.is_bool b);
(* boolean ite:
just add [a => (ite a b c <=> b)]
and [¬a => (ite a b c <=> c)] *)
let lit_a = Lit.atom self.tst a in
add_axiom
[ Lit.neg lit_a; Lit.make_eq self.tst t b ]
(mk_step_ @@ fun () -> Proof_rules.lemma_ite_true ~ite:t);
add_axiom
[ Lit.neg lit; lit_a; Lit.make_eq self.tst t c ]
(mk_step_ @@ fun () -> Proof_rules.lemma_ite_false ~ite:t)
| B_equiv (a, b) ->
let a = Lit.atom self.tst a in
let b = Lit.atom self.tst b in
equiv_ ~is_xor:false a b
| B_eq (a, b) when T.is_bool a ->
let a = Lit.atom self.tst a in
let b = Lit.atom self.tst b in
equiv_ ~is_xor:false a b
| B_xor (a, b) ->
let a = Lit.atom self.tst a in
let b = Lit.atom self.tst b in
equiv_ ~is_xor:true a b
| B_neq (a, b) when T.is_bool a ->
let a = Lit.atom self.tst a in
let b = Lit.atom self.tst b in
equiv_ ~is_xor:true a b
| B_eq _ | B_neq _ -> ()
let check_ ~final self solver acts lits =
lits (fun lit ->
let t = Lit.term lit in
match A.view_as_bool t with
| B_atom _ -> ()
| v -> tseitin ~final self solver acts lit t v)
let partial_check (self : state) solver acts (lits : Lit.t Iter.t) =
check_ ~final:false self solver acts lits
let final_check (self : state) solver acts (lits : Lit.t Iter.t) =
check_ ~final:true self solver acts lits
let create_and_setup ~id:_ (solver : SI.t) : state =
let tst = SI.tst solver in
let stat = SI.stats solver in
let self =
{
tst;
expanded = Lit.Tbl.create 24;
n_expanded = Stat.mk_int stat "th.bool.dyn.expanded";
n_clauses = Stat.mk_int stat "th.bool.dyn.clauses";
n_simplify = Stat.mk_int stat "th.bool.dyn.simplify";
}
in
SI.add_simplifier solver (simplify self);
SI.on_preprocess solver (preprocess_ self);
SI.on_final_check solver (final_check self);
SI.on_partial_check solver (partial_check self);
self
let theory = SMT.Solver.mk_theory ~name:"th-bool.dyn" ~create_and_setup ()
end
let theory (module A : ARG) : SMT.theory =
let module M = Make (A) in
M.theory