sidekick/src/core/Internal.ml
2017-12-29 21:29:43 +01:00

1314 lines
45 KiB
OCaml

(*
MSAT is free software, using the Apache license, see file LICENSE
Copyright 2014 Guillaume Bury
Copyright 2014 Simon Cruanes
*)
module Make
(St : Solver_types.S)
(Plugin : Plugin_intf.S with type term = St.term
and type formula = St.formula
and type proof = St.proof)
= struct
module Proof = Res.Make(St)
open St
module H = Heap.Make(struct
type t = St.Elt.t
let[@inline] cmp i j = Elt.weight j < Elt.weight i (* comparison by weight *)
let dummy = Elt.of_var St.Var.dummy
let idx = Elt.idx
let set_idx = Elt.set_idx
end)
exception Sat
exception Unsat
exception UndecidedLit
exception Restart
exception Conflict of clause
(* Log levels *)
let error = 1
let warn = 3
let info = 5
let debug = 50
let var_decay : float = 1. /. 0.95
(* inverse of the activity factor for variables. Default 1/0.999 *)
let clause_decay : float = 1. /. 0.999
(* inverse of the activity factor for clauses. Default 1/0.95 *)
let restart_inc : float = 1.5
(* multiplicative factor for restart limit, default 1.5 *)
let learntsize_inc : float = 1.1
(* multiplicative factor for [learntsize_factor] at each restart, default 1.1 *)
(* Singleton type containing the current state *)
type t = {
st : St.t;
(* Clauses are simplified for eficiency purposes. In the following
vectors, the comments actually refer to the original non-simplified
clause. *)
clauses_hyps : clause Vec.t;
(* clauses added by the user *)
clauses_learnt : clause Vec.t;
(* learnt clauses (tautologies true at any time, whatever the user level) *)
clauses_temp : clause Vec.t;
(* Temp clauses, corresponding to the local assumptions. This vec is used
only to have an efficient way to access the list of local assumptions. *)
clauses_root : clause Stack.t;
(* Clauses that should propagate at level 0, but couldn't *)
clauses_to_add : clause Stack.t;
(* Clauses either assumed or pushed by the theory, waiting to be added. *)
mutable unsat_conflict : clause option;
(* conflict clause at [base_level], if any *)
mutable next_decision : atom option;
(* When the last conflict was a semantic one, this stores the next decision to make *)
trail : trail_elt Vec.t;
(* decision stack + propagated elements (atoms or assignments). *)
elt_levels : int Vec.t;
(* decision levels in [trail] *)
th_levels : Plugin.level Vec.t;
(* theory states corresponding to elt_levels *)
user_levels : int Vec.t;
(* user levels in [clauses_temp] *)
mutable th_head : int;
(* Start offset in the queue {!trail} of
unit facts not yet seen by the theory. *)
mutable elt_head : int;
(* Start offset in the queue {!trail} of
unit facts to propagate, within the trail *)
(* invariant:
- during propagation, th_head <= elt_head
- then, once elt_head reaches length trail, Th.assume is
called so that th_head can catch up with elt_head
- this is repeated until a fixpoint is reached;
- before a decision (and after the fixpoint),
th_head = elt_head = length trail
*)
order : H.t;
(* Heap ordered by variable activity *)
mutable var_incr : float;
(* increment for variables' activity *)
mutable clause_incr : float;
(* increment for clauses' activity *)
mutable restart_first : int;
(* intial restart limit, default 100 *)
mutable learntsize_factor : float;
(* initial limit for the number of learnt clauses, 1/3 of initial
number of clauses by default *)
mutable dirty: bool;
(* is there a [pop()] on top of the stack for examining
current model/proof? *)
}
(* Starting environment. *)
let create_ ~st ~size_trail ~size_lvl () : t = {
st;
unsat_conflict = None;
next_decision = None;
clauses_hyps = Vec.make 0 Clause.dummy;
clauses_learnt = Vec.make 0 Clause.dummy;
clauses_temp = Vec.make 0 Clause.dummy;
clauses_root = Stack.create ();
clauses_to_add = Stack.create ();
th_head = 0;
elt_head = 0;
trail = Vec.make size_trail (Trail_elt.of_atom Atom.dummy);
elt_levels = Vec.make size_lvl (-1);
th_levels = Vec.make size_lvl Plugin.dummy;
user_levels = Vec.make 0 (-1);
order = H.create();
var_incr = 1.;
clause_incr = 1.;
restart_first = 100;
learntsize_factor = 1. /. 3. ;
dirty=false;
}
let create ?(size=`Big) ?st () : t =
let st = match st with Some s -> s | None -> St.create ~size () in
let size_trail, size_lvl = match size with
| `Tiny -> 0, 0
| `Small -> 32, 16
| `Big -> 600, 50
in create_ ~st ~size_trail ~size_lvl ()
(* Misc functions *)
let to_float = float_of_int
let to_int = int_of_float
let[@inline] st t = t.st
let[@inline] nb_clauses st = Vec.size st.clauses_hyps
(* let nb_vars () = St.nb_elt () *)
let[@inline] decision_level st = Vec.size st.elt_levels
let[@inline] base_level st = Vec.size st.user_levels
(* Are the assumptions currently unsat ? *)
let[@inline] is_unsat st =
match st.unsat_conflict with
| Some _ -> true
| None -> false
(* Iteration over subterms.
When incrementing activity, we want to be able to iterate over
all subterms of a formula. However, the function provided by the theory
may be costly (if it walks a tree-like structure, and does some processing
to ignore some subterms for instance), so we want to 'cache' the list
of subterms of each formula, so we have a field [v_assignable]
directly in variables to do so. *)
let iter_sub f v =
if St.mcsat then
match v.v_assignable with
| Some l -> List.iter f l
| None -> assert false
(* When we have a new literal,
we need to first create the list of its subterms. *)
let mk_atom st (f:St.formula) : atom =
let res = Atom.make st.st f in
if St.mcsat then (
begin match res.var.v_assignable with
| Some _ -> ()
| None ->
let l = ref [] in
Plugin.iter_assignable
(fun t -> l := Lit.make st.st t :: !l)
res.var.pa.lit;
res.var.v_assignable <- Some !l;
end;
);
res
(* Variable and literal activity.
Activity is used to decide on which variable to decide when propagation
is done. Uses a heap (implemented in Iheap), to keep track of variable activity.
To be more general, the heap only stores the variable/literal id (i.e an int).
When we add a variable (which wraps a formula), we also need to add all
its subterms.
*)
let rec insert_var_order st (elt:elt) : unit =
H.insert st.order elt;
begin match elt with
| E_lit _ -> ()
| E_var v -> insert_subterms_order st v
end
and insert_subterms_order st (v:St.var) : unit =
iter_sub (fun t -> insert_var_order st (Elt.of_lit t)) v
(* Add new litterals/atoms on which to decide on, even if there is no
clause that constrains it.
We could maybe check if they have already has been decided before
inserting them into the heap, if it appears that it helps performance. *)
let new_lit st t =
let l = Lit.make st.st t in
insert_var_order st (E_lit l)
let new_atom st (p:formula) : unit =
let a = mk_atom st p in
insert_var_order st (E_var a.var)
(* Rather than iterate over all the heap when we want to decrease all the
variables/literals activity, we instead increase the value by which
we increase the activity of 'interesting' var/lits. *)
let[@inline] var_decay_activity st =
st.var_incr <- st.var_incr *. var_decay
let[@inline] clause_decay_activity st =
st.clause_incr <- st.clause_incr *. clause_decay
(* increase activity of [v] *)
let var_bump_activity_aux st v =
v.v_weight <- v.v_weight +. st.var_incr;
if v.v_weight > 1e100 then (
for i = 0 to St.nb_elt st.st - 1 do
Elt.set_weight (St.get_elt st.st i) ((Elt.weight (St.get_elt st.st i)) *. 1e-100)
done;
st.var_incr <- st.var_incr *. 1e-100;
);
let elt = Elt.of_var v in
if H.in_heap elt then (
H.decrease st.order elt
)
(* increase activity of literal [l] *)
let lit_bump_activity_aux st (l:lit): unit =
l.l_weight <- l.l_weight +. st.var_incr;
if l.l_weight > 1e100 then (
for i = 0 to St.nb_elt st.st - 1 do
Elt.set_weight (St.get_elt st.st i) ((Elt.weight (St.get_elt st.st i)) *. 1e-100)
done;
st.var_incr <- st.var_incr *. 1e-100;
);
let elt = Elt.of_lit l in
if H.in_heap elt then (
H.decrease st.order elt
)
(* increase activity of var [v] *)
let var_bump_activity st (v:var): unit =
var_bump_activity_aux st v;
iter_sub (lit_bump_activity_aux st) v
(* increase activity of clause [c] *)
let clause_bump_activity st (c:clause) : unit =
c.activity <- c.activity +. st.clause_incr;
if c.activity > 1e20 then (
for i = 0 to Vec.size st.clauses_learnt - 1 do
(Vec.get st.clauses_learnt i).activity <-
(Vec.get st.clauses_learnt i).activity *. 1e-20;
done;
st.clause_incr <- st.clause_incr *. 1e-20
)
(* Simplification of clauses.
When adding new clauses, it is desirable to 'simplify' them, i.e
minimize the amount of literals in it, because it greatly reduces
the search space for new watched literals during propagation.
Additionally, we have to partition the lits, to ensure the watched
literals (which are the first two lits of the clause) are appropriate.
Indeed, it is better to watch true literals, and then unassigned literals.
Watching false literals should be a last resort, and come with constraints
(see {!add_clause}).
*)
exception Trivial
(* [arr_to_list a i] converts [a.(i), ... a.(length a-1)] into a list *)
let arr_to_list arr i : _ list =
if i >= Array.length arr then []
else Array.to_list (Array.sub arr i (Array.length arr - i))
(* Eliminates atom doublons in clauses *)
let eliminate_duplicates clause : clause =
let trivial = ref false in
let duplicates = ref [] in
let res = ref [] in
Array.iter (fun a ->
if Atom.seen a then duplicates := a :: !duplicates
else (
Atom.mark a;
res := a :: !res
))
clause.atoms;
List.iter
(fun a ->
if Var.seen_both a.var then trivial := true;
Var.clear a.var)
!res;
if !trivial then
raise Trivial
else if !duplicates = [] then
clause
else
Clause.make !res (History [clause])
(* Partition literals for new clauses, into:
- true literals (maybe makes the clause trivial if the lit is proved true at level 0)
- unassigned literals, yet to be decided
- false literals (not suitable to watch, those at level 0 can be removed from the clause)
Clauses that propagated false lits are remembered to reconstruct resolution proofs.
*)
let partition atoms : atom list * clause list =
let rec partition_aux trues unassigned falses history i =
if i >= Array.length atoms then (
trues @ unassigned @ falses, history
) else (
let a = atoms.(i) in
if a.is_true then (
let l = a.var.v_level in
if l = 0 then
raise Trivial (* A var true at level 0 gives a trivially true clause *)
else
(a :: trues) @ unassigned @ falses @
(arr_to_list atoms (i + 1)), history
) else if a.neg.is_true then (
let l = a.var.v_level in
if l = 0 then (
match a.var.reason with
| Some (Bcp cl) ->
partition_aux trues unassigned falses (cl :: history) (i + 1)
(* A var false at level 0 can be eliminated from the clause,
but we need to kepp in mind that we used another clause to simplify it. *)
| Some Semantic ->
partition_aux trues unassigned falses history (i + 1)
(* Semantic propagations at level 0 are, well not easy to deal with,
this shouldn't really happen actually (because semantic propagations
at level 0 should come with a proof). *)
(* TODO: get a proof of the propagation. *)
| None | Some Decision -> assert false
(* The var must have a reason, and it cannot be a decision/assumption,
since its level is 0. *)
) else (
partition_aux trues unassigned (a::falses) history (i + 1)
)
) else (
partition_aux trues (a::unassigned) falses history (i + 1)
)
)
in
partition_aux [] [] [] [] 0
(* Making a decision.
Before actually creatig a new decision level, we check that
all propagations have been done and propagated to the theory,
i.e that the theoriy state indeed takes into account the whole
stack of literals
i.e we have indeed reached a propagation fixpoint before making
a new decision *)
let new_decision_level st =
assert (st.th_head = Vec.size st.trail);
assert (st.elt_head = Vec.size st.trail);
Vec.push st.elt_levels (Vec.size st.trail);
Vec.push st.th_levels (Plugin.current_level ()); (* save the current theory state *)
()
(* Attach/Detach a clause.
A clause is attached (to its watching lits) when it is first added,
either because it is assumed or learnt.
*)
let attach_clause c =
assert (not c.attached);
Log.debugf debug (fun k -> k "Attaching %a" Clause.debug c);
Vec.push c.atoms.(0).neg.watched c;
Vec.push c.atoms.(1).neg.watched c;
c.attached <- true;
()
(* Backtracking.
Used to backtrack, i.e cancel down to [lvl] excluded,
i.e we want to go back to the state the solver was in
when decision level [lvl] was created. *)
let cancel_until st lvl =
assert (lvl >= base_level st);
(* Nothing to do if we try to backtrack to a non-existent level. *)
if decision_level st <= lvl then (
Log.debugf debug (fun k -> k "Already at level <= %d" lvl)
) else (
Log.debugf info (fun k -> k "Backtracking to lvl %d" lvl);
(* We set the head of the solver and theory queue to what it was. *)
let head = ref (Vec.get st.elt_levels lvl) in
st.elt_head <- !head;
st.th_head <- !head;
(* Now we need to cleanup the vars that are not valid anymore
(i.e to the right of elt_head in the queue. *)
for c = st.elt_head to Vec.size st.trail - 1 do
match (Vec.get st.trail c) with
(* A literal is unassigned, we nedd to add it back to
the heap of potentially assignable literals, unless it has
a level lower than [lvl], in which case we just move it back. *)
| Lit l ->
if l.l_level <= lvl then (
Vec.set st.trail !head (Trail_elt.of_lit l);
head := !head + 1
) else (
l.assigned <- None;
l.l_level <- -1;
insert_var_order st (Elt.of_lit l)
)
(* A variable is not true/false anymore, one of two things can happen: *)
| Atom a ->
if a.var.v_level <= lvl then (
(* It is a late propagation, which has a level
lower than where we backtrack, so we just move it to the head
of the queue, to be propagated again. *)
Vec.set st.trail !head (Trail_elt.of_atom a);
head := !head + 1
) else (
(* it is a result of bolean propagation, or a semantic propagation
with a level higher than the level to which we backtrack,
in that case, we simply unset its value and reinsert it into the heap. *)
a.is_true <- false;
a.neg.is_true <- false;
a.var.v_level <- -1;
a.var.reason <- None;
insert_var_order st (Elt.of_var a.var)
)
done;
(* Recover the right theory state. *)
Plugin.backtrack (Vec.get st.th_levels lvl);
(* Resize the vectors according to their new size. *)
Vec.shrink st.trail !head;
Vec.shrink st.elt_levels lvl;
Vec.shrink st.th_levels lvl;
);
assert (Vec.size st.elt_levels = Vec.size st.th_levels);
()
(* Unsatisfiability is signaled through an exception, since it can happen
in multiple places (adding new clauses, or solving for instance). *)
let report_unsat st confl : _ =
Log.debugf info (fun k -> k "@[Unsat conflict: %a@]" Clause.debug confl);
st.unsat_conflict <- Some confl;
raise Unsat
(* Simplification of boolean propagation reasons.
When doing boolean propagation *at level 0*, it can happen
that the clause cl, which propagates a formula, also contains
other formulas, but has been simplified. in which case, we
need to rebuild a clause with correct history, in order to
be able to build a correct proof at the end of proof search. *)
let simpl_reason : reason -> reason = function
| (Bcp cl) as r ->
let l, history = partition cl.atoms in
begin match l with
| [_] ->
if history = [] then (
(* no simplification has been done, so [cl] is actually a clause with only
[a], so it is a valid reason for propagating [a]. *)
r
) else (
(* Clauses in [history] have been used to simplify [cl] into a clause [tmp_cl]
with only one formula (which is [a]). So we explicitly create that clause
and set it as the cause for the propagation of [a], that way we can
rebuild the whole resolution tree when we want to prove [a]. *)
let c' = Clause.make l (History (cl :: history)) in
Log.debugf debug
(fun k -> k "Simplified reason: @[<v>%a@,%a@]" Clause.debug cl Clause.debug c');
Bcp c'
)
| _ ->
Log.debugf error
(fun k ->
k "@[<v 2>Failed at reason simplification:@,%a@,%a@]"
(Vec.print ~sep:"" Atom.debug)
(Vec.from_list l Atom.dummy)
Clause.debug cl);
assert false
end
| r -> r
(* Boolean propagation.
Wrapper function for adding a new propagated formula. *)
let enqueue_bool st a ~level:lvl reason : unit =
if a.neg.is_true then (
Log.debugf error (fun k->k "Trying to enqueue a false literal: %a" Atom.debug a);
assert false
);
assert (not a.is_true && a.var.v_level < 0 &&
a.var.reason = None && lvl >= 0);
let reason =
if lvl > 0 then reason
else simpl_reason reason
in
a.is_true <- true;
a.var.v_level <- lvl;
a.var.reason <- Some reason;
Vec.push st.trail (Trail_elt.of_atom a);
Log.debugf debug
(fun k->k "Enqueue (%d): %a" (Vec.size st.trail) Atom.debug a);
()
let enqueue_semantic st a terms =
if not a.is_true then (
let l = List.map (Lit.make st.st) terms in
let lvl = List.fold_left (fun acc {l_level; _} ->
assert (l_level > 0); max acc l_level) 0 l in
H.grow_to_at_least st.order (St.nb_elt st.st);
enqueue_bool st a ~level:lvl Semantic
)
(* MCsat semantic assignment *)
let enqueue_assign st l value lvl =
match l.assigned with
| Some _ ->
Log.debugf error
(fun k -> k "Trying to assign an already assigned literal: %a" Lit.debug l);
assert false
| None ->
assert (l.l_level < 0);
l.assigned <- Some value;
l.l_level <- lvl;
Vec.push st.trail (Trail_elt.of_lit l);
Log.debugf debug
(fun k -> k "Enqueue (%d): %a" (Vec.size st.trail) Lit.debug l);
()
(* swap elements of array *)
let[@inline] swap_arr a i j =
if i<>j then (
let tmp = a.(i) in
a.(i) <- a.(j);
a.(j) <- tmp;
)
(* move atoms assigned at high levels first *)
let put_high_level_atoms_first (arr:atom array) : unit =
Array.iteri
(fun i a ->
if i>0 && Atom.level a > Atom.level arr.(0) then (
(* move first to second, [i]-th to first, second to [i] *)
if i=1 then (
swap_arr arr 0 1;
) else (
let tmp = arr.(1) in
arr.(1) <- arr.(0);
arr.(0) <- arr.(i);
arr.(i) <- tmp;
);
) else if i>1 && Atom.level a > Atom.level arr.(1) then (
swap_arr arr 1 i;
))
arr
(* evaluate an atom for MCsat, if it's not assigned
by boolean propagation/decision *)
let th_eval st a : bool option =
if a.is_true || a.neg.is_true then None
else match Plugin.eval a.lit with
| Plugin_intf.Unknown -> None
| Plugin_intf.Valued (b, l) ->
let atom = if b then a else a.neg in
enqueue_semantic st atom l;
Some b
(* find which level to backtrack to, given a conflict clause
and a boolean stating whether it is
a UIP ("Unique Implication Point")
precond: the atom list is sorted by decreasing decision level *)
let backtrack_lvl st : atom list -> int * bool = function
| [] | [_] ->
0, true
| a :: b :: _ ->
assert(a.var.v_level > base_level st);
if a.var.v_level > b.var.v_level then (
(* backtrack below [a], so we can propagate [not a] *)
b.var.v_level, true
) else (
assert (a.var.v_level = b.var.v_level);
assert (a.var.v_level >= base_level st);
max (a.var.v_level - 1) (base_level st), false
)
(* result of conflict analysis, containing the learnt clause and some
additional info.
invariant: cr_history's order matters, as its head is later used
during pop operations to determine the origin of a clause/conflict
(boolean conflict i.e hypothesis, or theory lemma) *)
type conflict_res = {
cr_backtrack_lvl : int; (* level to backtrack to *)
cr_learnt: atom list; (* lemma learnt from conflict *)
cr_history: clause list; (* justification *)
cr_is_uip: bool; (* conflict is UIP? *)
}
let get_atom st i =
match Vec.get st.trail i with
| Lit _ -> assert false | Atom x -> x
(* conflict analysis for SAT
Same idea as the mcsat analyze function (without semantic propagations),
except we look the the Last UIP (TODO: check ?), and do it in an imperative
and efficient manner. *)
let analyze_sat st c_clause : conflict_res =
let pathC = ref 0 in
let learnt = ref [] in
let cond = ref true in
let blevel = ref 0 in
let seen = ref [] in
let c = ref (Some c_clause) in
let tr_ind = ref (Vec.size st.trail - 1) in
let history = ref [] in
assert (decision_level st > 0);
let conflict_level =
Array.fold_left (fun acc p -> max acc p.var.v_level) 0 c_clause.atoms
in
Log.debugf debug
(fun k -> k "Analyzing conflict (%d): %a" conflict_level Clause.debug c_clause);
while !cond do
begin match !c with
| None ->
Log.debug debug " skipping resolution for semantic propagation"
| Some clause ->
Log.debugf debug (fun k->k" Resolving clause: %a" Clause.debug clause);
begin match clause.cpremise with
| History _ -> clause_bump_activity st clause
| Hyp | Local | Lemma _ -> ()
end;
history := clause :: !history;
(* visit the current predecessors *)
for j = 0 to Array.length clause.atoms - 1 do
let q = clause.atoms.(j) in
assert (q.is_true || q.neg.is_true && q.var.v_level >= 0); (* unsure? *)
if q.var.v_level <= 0 then (
assert (q.neg.is_true);
match q.var.reason with
| Some Bcp cl -> history := cl :: !history
| _ -> assert false
);
if not (Var.seen_both q.var) then (
Atom.mark q;
Atom.mark q.neg;
seen := q :: !seen;
if q.var.v_level > 0 then (
var_bump_activity st q.var;
if q.var.v_level >= conflict_level then (
incr pathC;
) else (
learnt := q :: !learnt;
blevel := max !blevel q.var.v_level
)
)
)
done
end;
(* look for the next node to expand *)
while
let a = Vec.get st.trail !tr_ind in
Log.debugf debug (fun k -> k " looking at: %a" Trail_elt.debug a);
match a with
| Atom q ->
(not (Var.seen_both q.var)) ||
(q.var.v_level < conflict_level)
| Lit _ -> true
do
decr tr_ind;
done;
let p = get_atom st !tr_ind in
decr pathC;
decr tr_ind;
match !pathC, p.var.reason with
| 0, _ ->
cond := false;
learnt := p.neg :: (List.rev !learnt)
| n, Some Semantic ->
assert (n > 0);
learnt := p.neg :: !learnt;
c := None
| n, Some Bcp cl ->
assert (n > 0);
assert (p.var.v_level >= conflict_level);
c := Some cl
| _ -> assert false
done;
List.iter (fun q -> Var.clear q.var) !seen;
let l = List.fast_sort (fun p q -> compare q.var.v_level p.var.v_level) !learnt in
let level, is_uip = backtrack_lvl st l in
{ cr_backtrack_lvl = level;
cr_learnt = l;
cr_history = List.rev !history;
cr_is_uip = is_uip;
}
let[@inline] analyze st c_clause : conflict_res =
analyze_sat st c_clause
(*
if St.mcsat
then analyze_mcsat c_clause
else analyze_sat c_clause
*)
(* add the learnt clause to the clause database, propagate, etc. *)
let record_learnt_clause st (confl:clause) (cr:conflict_res): unit =
begin match cr.cr_learnt with
| [] -> assert false
| [fuip] ->
assert (cr.cr_backtrack_lvl = 0);
if fuip.neg.is_true then (
report_unsat st confl
) else (
let uclause = Clause.make cr.cr_learnt (History cr.cr_history) in
Vec.push st.clauses_learnt uclause;
(* no need to attach [uclause], it is true at level 0 *)
enqueue_bool st fuip ~level:0 (Bcp uclause)
)
| fuip :: _ ->
let lclause = Clause.make cr.cr_learnt (History cr.cr_history) in
Vec.push st.clauses_learnt lclause;
attach_clause lclause;
clause_bump_activity st lclause;
if cr.cr_is_uip then (
enqueue_bool st fuip ~level:cr.cr_backtrack_lvl (Bcp lclause)
) else (
st.next_decision <- Some fuip.neg
)
end;
var_decay_activity st;
clause_decay_activity st
(* process a conflict:
- learn clause
- backtrack
- report unsat if conflict at level 0
*)
let add_boolean_conflict st (confl:clause): unit =
Log.debugf info (fun k -> k "Boolean conflict: %a" Clause.debug confl);
st.next_decision <- None;
assert (decision_level st >= base_level st);
if decision_level st = base_level st ||
Array.for_all (fun a -> a.var.v_level <= base_level st) confl.atoms then (
(* Top-level conflict *)
report_unsat st confl;
);
let cr = analyze st confl in
cancel_until st (max cr.cr_backtrack_lvl (base_level st));
record_learnt_clause st confl cr
(* Get the correct vector to insert a clause in. *)
let clause_vector st c =
match c.cpremise with
| Hyp -> st.clauses_hyps
| Local -> st.clauses_temp
| Lemma _ | History _ -> st.clauses_learnt
(* Add a new clause, simplifying, propagating, and backtracking if
the clause is false in the current trail *)
let add_clause st (init:clause) : unit =
Log.debugf debug (fun k -> k "Adding clause: @[<hov>%a@]" Clause.debug init);
(* Insertion of new lits is done before simplification. Indeed, else a lit in a
trivial clause could end up being not decided on, which is a bug. *)
Array.iter (fun x -> insert_var_order st (Elt.of_var x.var)) init.atoms;
let vec = clause_vector st init in
try
let c = eliminate_duplicates init in
Log.debugf debug (fun k -> k "Doublons eliminated: %a" Clause.debug c);
let atoms, history = partition c.atoms in
let clause =
if history = []
then (
(* update order of atoms *)
List.iteri (fun i a -> c.atoms.(i) <- a) atoms;
c
)
else Clause.make atoms (History (c :: history))
in
Log.debugf info (fun k->k "New clause: @[<hov>%a@]" Clause.debug clause);
match atoms with
| [] ->
(* Report_unsat will raise, and the current clause will be lost if we do not
store it somewhere. Since the proof search will end, any of env.clauses_to_add
or env.clauses_root is adequate. *)
Stack.push clause st.clauses_root;
report_unsat st clause
| [a] ->
cancel_until st (base_level st);
if a.neg.is_true then (
(* Since we cannot propagate the atom [a], in order to not lose
the information that [a] must be true, we add clause to the list
of clauses to add, so that it will be e-examined later. *)
Log.debug debug "Unit clause, adding to clauses to add";
Stack.push clause st.clauses_to_add;
report_unsat st clause
) else if a.is_true then (
(* If the atom is already true, then it should be because of a local hyp.
However it means we can't propagate it at level 0. In order to not lose
that information, we store the clause in a stack of clauses that we will
add to the solver at the next pop. *)
Log.debug debug "Unit clause, adding to root clauses";
assert (0 < a.var.v_level && a.var.v_level <= base_level st);
Stack.push clause st.clauses_root;
()
) else (
Log.debugf debug (fun k->k "Unit clause, propagating: %a" Atom.debug a);
Vec.push vec clause;
enqueue_bool st a ~level:0 (Bcp clause)
)
| a::b::_ ->
Vec.push vec clause;
if a.neg.is_true then (
(* Atoms need to be sorted in decreasing order of decision level,
or we might watch the wrong literals. *)
put_high_level_atoms_first clause.atoms;
attach_clause clause;
add_boolean_conflict st clause
) else (
attach_clause clause;
if b.neg.is_true && not a.is_true && not a.neg.is_true then (
let lvl = List.fold_left (fun m a -> max m a.var.v_level) 0 atoms in
cancel_until st (max lvl (base_level st));
enqueue_bool st a ~level:lvl (Bcp clause)
)
)
with Trivial ->
Vec.push vec init;
Log.debugf info (fun k->k "Trivial clause ignored : @[%a@]" Clause.debug init)
let flush_clauses st =
if not (Stack.is_empty st.clauses_to_add) then (
let nbv = St.nb_elt st.st in
H.grow_to_at_least st.order nbv;
while not (Stack.is_empty st.clauses_to_add) do
let c = Stack.pop st.clauses_to_add in
add_clause st c
done
)
type watch_res =
| Watch_kept
| Watch_removed
(* boolean propagation.
[a] is the false atom, one of [c]'s two watch literals
[i] is the index of [c] in [a.watched]
@return whether [c] was removed from [a.watched]
*)
let propagate_in_clause st (a:atom) (c:clause) (i:int): watch_res =
let atoms = c.atoms in
let first = atoms.(0) in
if first == a.neg then (
(* false lit must be at index 1 *)
atoms.(0) <- atoms.(1);
atoms.(1) <- first
) else assert (a.neg == atoms.(1));
let first = atoms.(0) in
if first.is_true
then Watch_kept (* true clause, keep it in watched *)
else (
try (* look for another watch lit *)
for k = 2 to Array.length atoms - 1 do
let ak = atoms.(k) in
if not (ak.neg.is_true) then (
(* watch lit found: update and exit *)
atoms.(1) <- ak;
atoms.(k) <- a.neg;
(* remove [c] from [a.watched], add it to [ak.neg.watched] *)
Vec.push ak.neg.watched c;
assert (Vec.get a.watched i == c);
Vec.fast_remove a.watched i;
raise Exit
)
done;
(* no watch lit found *)
if first.neg.is_true then (
(* clause is false *)
st.elt_head <- Vec.size st.trail;
raise (Conflict c)
) else (
match th_eval st first with
| None -> (* clause is unit, keep the same watches, but propagate *)
enqueue_bool st first ~level:(decision_level st) (Bcp c)
| Some true -> ()
| Some false ->
st.elt_head <- Vec.size st.trail;
raise (Conflict c)
);
Watch_kept
with Exit ->
Watch_removed
)
(* propagate atom [a], which was just decided. This checks every
clause watching [a] to see if the clause is false, unit, or has
other possible watches
@param res the optional conflict clause that the propagation might trigger *)
let propagate_atom st a (res:clause option ref) : unit =
let watched = a.watched in
begin
try
let rec aux i =
if i >= Vec.size watched then ()
else (
let c = Vec.get watched i in
assert c.attached;
let j = match propagate_in_clause st a c i with
| Watch_kept -> i+1
| Watch_removed -> i (* clause at this index changed *)
in
aux j
)
in
aux 0
with Conflict c ->
assert (!res = None);
res := Some c
end;
()
(* Propagation (boolean and theory) *)
let create_atom st f =
let a = mk_atom st f in
ignore (th_eval st a);
a
let slice_get st i =
match Vec.get st.trail i with
| Atom a ->
Plugin_intf.Lit a.lit
| Lit {term; assigned = Some v; _} ->
Plugin_intf.Assign (term, v)
| Lit _ -> assert false
let slice_push st (l:formula list) (lemma:proof): unit =
let atoms = List.rev_map (create_atom st) l in
let c = Clause.make atoms (Lemma lemma) in
Log.debugf info (fun k->k "Pushing clause %a" Clause.debug c);
Stack.push c st.clauses_to_add
let slice_propagate (st:t) f = function
| Plugin_intf.Eval l ->
let a = mk_atom st f in
enqueue_semantic st a l
| Plugin_intf.Consequence (causes, proof) ->
let l = List.rev_map (mk_atom st) causes in
if List.for_all (fun a -> a.is_true) l then (
let p = mk_atom st f in
let c = Clause.make (p :: List.map Atom.neg l) (Lemma proof) in
if p.is_true then ()
else if p.neg.is_true then (
Stack.push c st.clauses_to_add
) else (
H.grow_to_at_least st.order (St.nb_elt st.st);
insert_subterms_order st p.var;
enqueue_bool st p ~level:(decision_level st) (Bcp c)
)
) else (
invalid_arg "Msat.Internal.slice_propagate"
)
let current_slice st : (_,_,_) Plugin_intf.slice = {
Plugin_intf.start = st.th_head;
length = Vec.size st.trail - st.th_head;
get = slice_get st;
push = slice_push st;
propagate = slice_propagate st;
}
(* full slice, for [if_sat] final check *)
let full_slice st : (_,_,_) Plugin_intf.slice = {
Plugin_intf.start = 0;
length = Vec.size st.trail;
get = slice_get st;
push = slice_push st;
propagate = (fun _ -> assert false);
}
(* some boolean literals were decided/propagated within Msat. Now we
need to inform the theory of those assumptions, so it can do its job.
@return the conflict clause, if the theory detects unsatisfiability *)
let rec theory_propagate st : clause option =
assert (st.elt_head = Vec.size st.trail);
assert (st.th_head <= st.elt_head);
if st.th_head = st.elt_head then (
None (* fixpoint/no propagation *)
) else (
let slice = current_slice st in
st.th_head <- st.elt_head; (* catch up *)
match Plugin.assume slice with
| Plugin_intf.Sat ->
propagate st
| Plugin_intf.Unsat (l, p) ->
(* conflict *)
let l = List.rev_map (create_atom st) l in
H.grow_to_at_least st.order (St.nb_elt st.st);
List.iter (fun a -> insert_var_order st (Elt.of_var a.var)) l;
let c = St.Clause.make l (Lemma p) in
Some c
)
(* fixpoint between boolean propagation and theory propagation
@return a conflict clause, if any *)
and propagate (st:t) : clause option =
(* First, treat the stack of lemmas added by the theory, if any *)
flush_clauses st;
(* Now, check that the situation is sane *)
assert (st.elt_head <= Vec.size st.trail);
if st.elt_head = Vec.size st.trail then
theory_propagate st
else (
let num_props = ref 0 in
let res = ref None in
while st.elt_head < Vec.size st.trail do
begin match Vec.get st.trail st.elt_head with
| Lit _ -> ()
| Atom a ->
incr num_props;
propagate_atom st a res
end;
st.elt_head <- st.elt_head + 1;
done;
match !res with
| None -> theory_propagate st
| _ -> !res
)
(* remove some learnt clauses
NOTE: so far we do not forget learnt clauses. We could, as long as
lemmas from the theory itself are kept. *)
let reduce_db () = ()
(* Decide on a new literal, and enqueue it into the trail *)
let rec pick_branch_aux st atom : unit =
let v = atom.var in
if v.v_level >= 0 then (
assert (v.pa.is_true || v.na.is_true);
pick_branch_lit st
) else match Plugin.eval atom.lit with
| Plugin_intf.Unknown ->
new_decision_level st;
let current_level = decision_level st in
enqueue_bool st atom ~level:current_level Decision
| Plugin_intf.Valued (b, l) ->
let a = if b then atom else atom.neg in
enqueue_semantic st a l
and pick_branch_lit st =
match st.next_decision with
| Some atom ->
st.next_decision <- None;
pick_branch_aux st atom
| None ->
begin match H.remove_min st.order with
| E_lit l ->
if Lit.level l >= 0 then
pick_branch_lit st
else (
let value = Plugin.assign l.term in
new_decision_level st;
let current_level = decision_level st in
enqueue_assign st l value current_level
)
| E_var v ->
pick_branch_aux st v.pa
| exception Not_found -> raise Sat
end
(* do some amount of search, until the number of conflicts or clause learnt
reaches the given parameters *)
let search (st:t) n_of_conflicts n_of_learnts : unit =
let conflictC = ref 0 in
while true do
match propagate st with
| Some confl -> (* Conflict *)
incr conflictC;
(* When the theory has raised Unsat, add_boolean_conflict
might 'forget' the initial conflict clause, and only add the
analyzed backtrack clause. So in those case, we use add_clause
to make sure the initial conflict clause is also added. *)
if confl.attached then
add_boolean_conflict st confl
else
add_clause st confl
| None -> (* No Conflict *)
assert (st.elt_head = Vec.size st.trail);
assert (st.elt_head = st.th_head);
if Vec.size st.trail = St.nb_elt st.st
then raise Sat;
if n_of_conflicts > 0 && !conflictC >= n_of_conflicts then (
Log.debug info "Restarting...";
cancel_until st (base_level st);
raise Restart
);
(* if decision_level() = 0 then simplify (); *)
if n_of_learnts >= 0 &&
Vec.size st.clauses_learnt - Vec.size st.trail >= n_of_learnts
then reduce_db();
pick_branch_lit st
done
let eval_level (st:t) lit =
let var, negated = Var.make st.st lit in
if not var.pa.is_true && not var.na.is_true
then raise UndecidedLit
else assert (var.v_level >= 0);
let truth = var.pa.is_true in
let value = match negated with
| Formula_intf.Negated -> not truth
| Formula_intf.Same_sign -> truth
in
value, var.v_level
let eval st lit = fst (eval_level st lit)
let[@inline] unsat_conflict st = st.unsat_conflict
let model (st:t) : (term * term) list =
let opt = function Some a -> a | None -> assert false in
Vec.fold
(fun acc e -> match e with
| Lit v -> (v.term, opt v.assigned) :: acc
| Atom _ -> acc)
[] st.trail
(* fixpoint of propagation and decisions until a model is found, or a
conflict is reached *)
let solve (st:t) : unit =
Log.debug 5 "solve";
if is_unsat st then raise Unsat;
let n_of_conflicts = ref (to_float st.restart_first) in
let n_of_learnts = ref ((to_float (nb_clauses st)) *. st.learntsize_factor) in
try
while true do
begin try
search st (to_int !n_of_conflicts) (to_int !n_of_learnts)
with
| Restart ->
n_of_conflicts := !n_of_conflicts *. restart_inc;
n_of_learnts := !n_of_learnts *. learntsize_inc
| Sat ->
assert (st.elt_head = Vec.size st.trail);
begin match Plugin.if_sat (full_slice st) with
| Plugin_intf.Sat -> ()
| Plugin_intf.Unsat (l, p) ->
let atoms = List.rev_map (create_atom st) l in
let c = Clause.make atoms (Lemma p) in
Log.debugf info (fun k -> k "Theory conflict clause: %a" Clause.debug c);
Stack.push c st.clauses_to_add
end;
if Stack.is_empty st.clauses_to_add then raise Sat
end
done
with Sat -> ()
let assume st ?tag cnf =
List.iter
(fun l ->
let atoms = List.rev_map (mk_atom st) l in
let c = Clause.make ?tag atoms Hyp in
Log.debugf debug (fun k -> k "Assuming clause: @[<hov 2>%a@]" Clause.debug c);
Stack.push c st.clauses_to_add)
cnf
(* create a factice decision level for local assumptions *)
let push st : unit =
Log.debug debug "Pushing a new user level";
cancel_until st (base_level st);
Log.debugf debug
(fun k -> k "@[<v>Status:@,@[<hov 2>trail: %d - %d@,%a@]"
st.elt_head st.th_head (Vec.print ~sep:"" Trail_elt.debug) st.trail);
begin match propagate st with
| Some confl ->
report_unsat st confl
| None ->
Log.debugf debug
(fun k -> k "@[<v>Current trail:@,@[<hov>%a@]@]"
(Vec.print ~sep:"" Trail_elt.debug) st.trail);
Log.debug info "Creating new user level";
new_decision_level st;
Vec.push st.user_levels (Vec.size st.clauses_temp);
assert (decision_level st = base_level st)
end
(* pop the last factice decision level *)
let pop st : unit =
if base_level st = 0 then
Log.debug warn "Cannot pop (already at level 0)"
else (
Log.debug info "Popping user level";
assert (base_level st > 0);
st.unsat_conflict <- None;
let n = Vec.last st.user_levels in
Vec.pop st.user_levels; (* before the [cancel_until]! *)
(* Add the root clauses to the clauses to add *)
Stack.iter (fun c -> Stack.push c st.clauses_to_add) st.clauses_root;
Stack.clear st.clauses_root;
(* remove from env.clauses_temp the now invalid caluses. *)
Vec.shrink st.clauses_temp n;
assert (Vec.for_all (fun c -> Array.length c.atoms = 1) st.clauses_temp);
assert (Vec.for_all (fun c -> c.atoms.(0).var.v_level <= base_level st) st.clauses_temp);
cancel_until st (base_level st)
)
(* Add local hyps to the current decision level *)
let local (st:t) (l:_ list) : unit =
let aux lit =
let a = mk_atom st lit in
Log.debugf info (fun k-> k "Local assumption: @[%a@]" Atom.debug a);
assert (decision_level st = base_level st);
if not a.is_true then (
let c = Clause.make [a] Local in
Log.debugf debug (fun k -> k "Temp clause: @[%a@]" Clause.debug c);
Vec.push st.clauses_temp c;
if a.neg.is_true then (
(* conflict between assumptions: UNSAT *)
report_unsat st c;
) else (
(* Grow the heap, because when the lit is backtracked,
it will be added to the heap. *)
H.grow_to_at_least st.order (St.nb_elt st.st);
(* make a decision, propagate *)
let level = decision_level st in
enqueue_bool st a ~level (Bcp c);
)
)
in
assert (base_level st > 0);
match st.unsat_conflict with
| None ->
Log.debug info "Adding local assumption";
cancel_until st (base_level st);
List.iter aux l
| Some _ ->
Log.debug warn "Cannot add local assumption (already unsat)"
(* Check satisfiability *)
let check_clause c =
let tmp = Array.map (fun a ->
if a.is_true then true
else if a.neg.is_true then false
else raise UndecidedLit) c.atoms in
let res = Array.exists (fun x -> x) tmp in
if not res then (
Log.debugf debug
(fun k -> k "Clause not satisfied: @[<hov>%a@]" Clause.debug c);
false
) else
true
let check_vec v =
Vec.for_all check_clause v
let check_stack s =
try
Stack.iter (fun c -> if not (check_clause c) then raise Exit) s;
true
with Exit ->
false
let check st : bool =
Stack.is_empty st.clauses_to_add &&
check_stack st.clauses_root &&
check_vec st.clauses_hyps &&
check_vec st.clauses_learnt &&
check_vec st.clauses_temp
(* Unsafe access to internal data *)
let hyps env = env.clauses_hyps
let history env = env.clauses_learnt
let temp env = env.clauses_temp
let trail env = env.trail
end
[@@inline]