mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-15 23:36:11 -05:00
231 lines
6.8 KiB
OCaml
231 lines
6.8 KiB
OCaml
type id = int
|
|
(** A reference to a previously defined object in the proof *)
|
|
|
|
(** Representation of types *)
|
|
module Ty = struct
|
|
type t =
|
|
| Bool
|
|
| Arrow of t array * t
|
|
| App of string * t array
|
|
| Ref of string
|
|
|
|
let equal : t -> t -> bool = ( = )
|
|
let hash : t -> int = CCHash.poly
|
|
let[@inline] view (self : t) : t = self
|
|
|
|
let rec pp out (self : t) =
|
|
match self with
|
|
| Bool -> Fmt.string out "Bool"
|
|
| Arrow (args, ret) ->
|
|
Fmt.fprintf out "(@[->@ %a@ %a@])" (Util.pp_array pp) args pp ret
|
|
| App (c, [||]) -> Fmt.string out c
|
|
| App (c, args) -> Fmt.fprintf out "(@[%s@ %a@])" c (Util.pp_array pp) args
|
|
| Ref name -> Fmt.fprintf out "(@@ %s)" name
|
|
end
|
|
|
|
module Fun = struct
|
|
type t = string
|
|
|
|
let pp out (self : t) = Fmt.string out self
|
|
let equal : t -> t -> bool = ( = )
|
|
let hash : t -> int = CCHash.poly
|
|
end
|
|
|
|
module Cstor = Fun
|
|
|
|
(** Representation of terms, with explicit sharing *)
|
|
module T = struct
|
|
type t =
|
|
| Bool of bool
|
|
| App_fun of Fun.t * t array
|
|
| App_ho of t * t
|
|
| Is_a of Fun.t * t
|
|
| Ite of t * t * t
|
|
| Not of t
|
|
| Eq of t * t
|
|
| Ref of string
|
|
|
|
let[@inline] view (self : t) : t = self
|
|
let equal : t -> t -> bool = ( = )
|
|
let hash : t -> int = CCHash.poly
|
|
let true_ : t = Bool true
|
|
let false_ : t = Bool false
|
|
let bool b = Bool b
|
|
|
|
let not_ = function
|
|
| Not x -> x
|
|
| x -> Not x
|
|
|
|
let eq a b : t = Eq (a, b)
|
|
let ref name : t = Ref name
|
|
let app_fun f args : t = App_fun (f, args)
|
|
let const c = app_fun c [||]
|
|
let app_ho a b : t = App_ho (a, b)
|
|
let ite a b c : t = Ite (a, b, c)
|
|
let is_a f t : t = Is_a (f, t)
|
|
|
|
let rec pp out = function
|
|
| Bool b -> Fmt.bool out b
|
|
| Ite (a, b, c) -> Fmt.fprintf out "(@[if@ %a@ %a@ %a@])" pp a pp b pp c
|
|
| App_fun (f, [||]) -> Fmt.string out f
|
|
| App_fun (f, args) ->
|
|
Fmt.fprintf out "(@[%a@ %a@])" Fun.pp f (Util.pp_array pp) args
|
|
| App_ho (f, a) -> Fmt.fprintf out "(@[%a@ %a@])" pp f pp a
|
|
| Not a -> Fmt.fprintf out "(@[not@ %a@])" pp a
|
|
| Eq (a, b) -> Fmt.fprintf out "(@[=@ %a@ %a@])" pp a pp b
|
|
| Ref name -> Fmt.fprintf out "(@@ %s)" name
|
|
| Is_a (c, t) -> Fmt.fprintf out "(@[(_ is %a)@ %a@])" Fun.pp c pp t
|
|
end
|
|
|
|
type term = T.t
|
|
type ty = Ty.t
|
|
|
|
module Lit = struct
|
|
type t = L_eq of term * term | L_a of bool * term
|
|
|
|
let pp_with ~pp_t out = function
|
|
| L_eq (t, u) -> Fmt.fprintf out "(@[=@ %a@ %a@])" pp_t t pp_t u
|
|
| L_a (false, t) -> Fmt.fprintf out "(@[not@ %a@])" pp_t t
|
|
| L_a (true, t) -> pp_t out t
|
|
|
|
let pp = pp_with ~pp_t:T.pp
|
|
let eq t u = L_eq (t, u)
|
|
let mk b t = L_a (b, t)
|
|
end
|
|
|
|
type clause = Lit.t list
|
|
|
|
type t =
|
|
| Unspecified
|
|
| Sorry (* NOTE: v. bad as we don't even specify the return *)
|
|
| Sorry_c of clause
|
|
| Named of string (* refers to previously defined clause *)
|
|
| Refl of term
|
|
| CC_lemma_imply of t list * term * term
|
|
| CC_lemma of clause
|
|
| Assertion of term
|
|
| Assertion_c of clause
|
|
| Hres of t * hres_step list
|
|
| Res of term * t * t
|
|
| Res1 of t * t
|
|
| Paramod1 of t * t
|
|
| Rup of clause * t list
|
|
| Clause_rw of {
|
|
res: clause;
|
|
c0: t;
|
|
using: t list; (** the rewriting equations/atoms *)
|
|
}
|
|
| DT_isa_split of ty * term list
|
|
| DT_isa_disj of ty * term * term
|
|
| DT_cstor_inj of Cstor.t * int * term list * term list (* [c t…=c u… |- t_i=u_i] *)
|
|
| Bool_true_is_true
|
|
| Bool_true_neq_false
|
|
| Bool_eq of term * term (* equal by pure boolean reasoning *)
|
|
| Bool_c of bool_c_name * term list (* boolean tautology *)
|
|
| Ite_true of term (* given [if a b c] returns [a=T |- if a b c=b] *)
|
|
| Ite_false of term
|
|
| LRA of clause
|
|
| Composite of {
|
|
(* some named (atomic) assumptions *)
|
|
assumptions: (string * Lit.t) list;
|
|
steps: composite_step array; (* last proof_rule is the proof *)
|
|
}
|
|
|
|
and bool_c_name = string
|
|
|
|
and composite_step =
|
|
| S_step_c of {
|
|
name: string; (* name *)
|
|
res: clause; (* result of [proof] *)
|
|
proof: t; (* sub-proof *)
|
|
}
|
|
(** A named step in {!Composite}, with the expected result.
|
|
This decouples the checking of the sub-proof, from its use in the rest
|
|
of the proof, as we can use [res] even if checking [proof] failed. *)
|
|
| S_step_anon of { name: string; (* name of step *) proof: t (* proof *) }
|
|
(** A named intermediate proof, to be reused in subsequent proofs.
|
|
Unlike {!S_step_c} we do not specify the expected result
|
|
so if this fails, any proof downstream will also fail. *)
|
|
| S_define_t of term * term (* [const := t] *)
|
|
| S_define_t_name of string * term
|
|
(* [const := t] *)
|
|
|
|
and hres_step =
|
|
| R of { pivot: term; p: t }
|
|
| R1 of t
|
|
| P of { lhs: term; rhs: term; p: t }
|
|
| P1 of t
|
|
|
|
let r p ~pivot : hres_step = R { pivot; p }
|
|
let r1 p = R1 p
|
|
let p p ~lhs ~rhs : hres_step = P { p; lhs; rhs }
|
|
let p1 p = P1 p
|
|
let stepc ~name res proof : composite_step = S_step_c { proof; name; res }
|
|
let step_anon ~name proof : composite_step = S_step_anon { name; proof }
|
|
let deft c rhs : composite_step = S_define_t (c, rhs)
|
|
let deft_name c rhs : composite_step = S_define_t_name (c, rhs)
|
|
|
|
let is_trivial_refl = function
|
|
| Refl _ -> true
|
|
| _ -> false
|
|
|
|
let default = Unspecified
|
|
let sorry_c c = Sorry_c (Iter.to_rev_list c)
|
|
let sorry_c_l c = Sorry_c c
|
|
let sorry = Sorry
|
|
let refl t : t = Refl t
|
|
let ref_by_name name : t = Named name
|
|
let cc_lemma c : t = CC_lemma c
|
|
|
|
let cc_imply_l l t u : t =
|
|
let l = List.filter (fun p -> not (is_trivial_refl p)) l in
|
|
match l with
|
|
| [] -> refl t (* only possible way [t=u] *)
|
|
| l -> CC_lemma_imply (l, t, u)
|
|
|
|
let cc_imply2 h1 h2 t u : t = CC_lemma_imply ([ h1; h2 ], t, u)
|
|
let assertion t = Assertion t
|
|
let assertion_c c = Assertion_c (Iter.to_rev_list c)
|
|
let assertion_c_l c = Assertion_c c
|
|
let rup c hyps : t = Rup (c, hyps)
|
|
let clause_rw c0 ~res ~using : t = Clause_rw { res; c0; using }
|
|
|
|
let composite_a ?(assms = []) steps : t =
|
|
Composite { assumptions = assms; steps }
|
|
|
|
let composite_l ?(assms = []) steps : t =
|
|
Composite { assumptions = assms; steps = Array.of_list steps }
|
|
|
|
let composite_iter ?(assms = []) steps : t =
|
|
let steps = Iter.to_array steps in
|
|
Composite { assumptions = assms; steps }
|
|
|
|
let isa_split ty i = DT_isa_split (ty, Iter.to_rev_list i)
|
|
let isa_disj ty t u = DT_isa_disj (ty, t, u)
|
|
let cstor_inj c i t u = DT_cstor_inj (c, i, t, u)
|
|
let ite_true t = Ite_true t
|
|
let ite_false t = Ite_false t
|
|
let true_is_true : t = Bool_true_is_true
|
|
let true_neq_false : t = Bool_true_neq_false
|
|
let bool_eq a b : t = Bool_eq (a, b)
|
|
let bool_c name c : t = Bool_c (name, c)
|
|
|
|
let hres_l p l : t =
|
|
let l =
|
|
List.filter
|
|
(function
|
|
| P1 (Refl _) -> false
|
|
| _ -> true)
|
|
l
|
|
in
|
|
if l = [] then
|
|
p
|
|
else
|
|
Hres (p, l)
|
|
|
|
let hres_iter c i : t = hres_l c (Iter.to_list i)
|
|
let res ~pivot p1 p2 : t = Res (pivot, p1, p2)
|
|
let res1 p1 p2 : t = Res1 (p1, p2)
|
|
let paramod1 p1 p2 : t = Paramod1 (p1, p2)
|
|
let lra_l c : t = LRA c
|
|
let lra c = LRA (Iter.to_rev_list c)
|