sidekick/src/cc/Sidekick_cc.ml
2022-07-15 23:51:53 -04:00

1406 lines
48 KiB
OCaml

include Sidekick_sigs_cc
open View
module Make (A : ARG) :
S
with module T = A.T
and module Lit = A.Lit
and module Proof_trace = A.Proof_trace = struct
module T = A.T
module Lit = A.Lit
module Proof_trace = A.Proof_trace
module Term = T.Term
module Fun = T.Fun
open struct
(* proof rules *)
module Rules_ = A.CC.Proof_rules
module P = Sidekick_sigs_proof_trace.Utils_ (Proof_trace)
end
type term = T.Term.t
type value = term
type term_store = T.Term.store
type lit = Lit.t
type fun_ = T.Fun.t
type proof = A.Proof_trace.t
type proof_step = A.Proof_trace.step_id
type actions =
(module ACTIONS
with type term = T.Term.t
and type lit = Lit.t
and type proof = proof
and type proof_step = proof_step)
module Bits : sig
type t = private int
type field
type bitfield_gen
val empty : t
val equal : t -> t -> bool
val mk_field : bitfield_gen -> field
val mk_gen : unit -> bitfield_gen
val get : field -> t -> bool
val set : field -> bool -> t -> t
val merge : t -> t -> t
end = struct
type bitfield_gen = int ref
let max_width = Sys.word_size - 2
let mk_gen () = ref 0
type t = int
type field = int
let empty : t = 0
let mk_field (gen : bitfield_gen) : field =
let n = !gen in
if n > max_width then
Error.errorf "maximum number of CC bitfields reached";
incr gen;
1 lsl n
let[@inline] get field x = x land field <> 0
let[@inline] set field b x =
if b then
x lor field
else
x land lnot field
let merge = ( lor )
let equal : t -> t -> bool = CCEqual.poly
end
type node = {
n_term: term;
mutable n_sig0: signature option; (* initial signature *)
mutable n_bits: Bits.t; (* bitfield for various properties *)
mutable n_parents: node Bag.t; (* parent terms of this node *)
mutable n_root: node;
(* representative of congruence class (itself if a representative) *)
mutable n_next: node; (* pointer to next element of congruence class *)
mutable n_size: int; (* size of the class *)
mutable n_as_lit: lit option;
(* TODO: put into payload? and only in root? *)
mutable n_expl: explanation_forest_link;
(* the rooted forest for explanations *)
}
(** A node of the congruence closure.
An equivalence class is represented by its "root" element,
the representative. *)
and signature = (fun_, node, node list) View.t
and explanation_forest_link =
| FL_none
| FL_some of { next: node; expl: explanation }
(* atomic explanation in the congruence closure *)
and explanation =
| E_trivial (* by pure reduction, tautologically equal *)
| E_lit of lit (* because of this literal *)
| E_merge of node * node
| E_merge_t of term * term
| E_congruence of node * node (* caused by normal congruence *)
| E_and of explanation * explanation
| E_theory of
term * term * (term * term * explanation list) list * proof_step
| E_same_val of node * node
type repr = node
module Class = struct
type t = node
let[@inline] equal (n1 : t) n2 = n1 == n2
let[@inline] hash n = Term.hash n.n_term
let[@inline] term n = n.n_term
let[@inline] pp out n = Term.pp out n.n_term
let[@inline] as_lit n = n.n_as_lit
let make (t : term) : t =
let rec n =
{
n_term = t;
n_sig0 = None;
n_bits = Bits.empty;
n_parents = Bag.empty;
n_as_lit = None;
(* TODO: provide a method to do it *)
n_root = n;
n_expl = FL_none;
n_next = n;
n_size = 1;
}
in
n
let[@inline] is_root (n : node) : bool = n.n_root == n
(* traverse the equivalence class of [n] *)
let iter_class_ (n : node) : node Iter.t =
fun yield ->
let rec aux u =
yield u;
if u.n_next != n then aux u.n_next
in
aux n
let[@inline] iter_class n =
assert (is_root n);
iter_class_ n
let[@inline] iter_parents (n : node) : node Iter.t =
assert (is_root n);
Bag.to_iter n.n_parents
type bitfield = Bits.field
let[@inline] get_field f t = Bits.get f t.n_bits
let[@inline] set_field f b t = t.n_bits <- Bits.set f b t.n_bits
end
(* non-recursive, inlinable function for [find] *)
let[@inline] find_ (n : node) : repr =
let n2 = n.n_root in
assert (Class.is_root n2);
n2
let[@inline] same_class (n1 : node) (n2 : node) : bool =
Class.equal (find_ n1) (find_ n2)
let[@inline] find _ n = find_ n
module Expl = struct
type t = explanation
let rec pp out (e : explanation) =
match e with
| E_trivial -> Fmt.string out "reduction"
| E_lit lit -> Lit.pp out lit
| E_congruence (n1, n2) ->
Fmt.fprintf out "(@[congruence@ %a@ %a@])" Class.pp n1 Class.pp n2
| E_merge (a, b) ->
Fmt.fprintf out "(@[merge@ %a@ %a@])" Class.pp a Class.pp b
| E_merge_t (a, b) ->
Fmt.fprintf out "(@[<hv>merge@ @[:n1 %a@]@ @[:n2 %a@]@])" Term.pp a
Term.pp b
| E_theory (t, u, es, _) ->
Fmt.fprintf out "(@[th@ :t `%a`@ :u `%a`@ :expl_sets %a@])" Term.pp t
Term.pp u
(Util.pp_list @@ Fmt.Dump.triple Term.pp Term.pp (Fmt.Dump.list pp))
es
| E_and (a, b) -> Format.fprintf out "(@[<hv1>and@ %a@ %a@])" pp a pp b
| E_same_val (n1, n2) ->
Fmt.fprintf out "(@[same-value@ %a@ %a@])" Class.pp n1 Class.pp n2
let mk_trivial : t = E_trivial
let[@inline] mk_congruence n1 n2 : t = E_congruence (n1, n2)
let[@inline] mk_merge a b : t =
if Class.equal a b then
mk_trivial
else
E_merge (a, b)
let[@inline] mk_merge_t a b : t =
if Term.equal a b then
mk_trivial
else
E_merge_t (a, b)
let[@inline] mk_lit l : t = E_lit l
let[@inline] mk_theory t u es pr = E_theory (t, u, es, pr)
let[@inline] mk_same_value t u =
if Class.equal t u then
mk_trivial
else
E_same_val (t, u)
let rec mk_list l =
match l with
| [] -> mk_trivial
| [ x ] -> x
| E_trivial :: tl -> mk_list tl
| x :: y ->
(match mk_list y with
| E_trivial -> x
| y' -> E_and (x, y'))
end
module Resolved_expl = struct
type t = {
lits: lit list;
same_value: (Class.t * Class.t) list;
pr: proof -> proof_step;
}
let[@inline] is_semantic (self : t) : bool =
match self.same_value with
| [] -> false
| _ :: _ -> true
let pp out (self : t) =
if not (is_semantic self) then
Fmt.fprintf out "(@[resolved-expl@ %a@])" (Util.pp_list Lit.pp)
self.lits
else (
let { lits; same_value; pr = _ } = self in
Fmt.fprintf out "(@[resolved-expl@ (@[%a@])@ :same-val (@[%a@])@])"
(Util.pp_list Lit.pp) lits
(Util.pp_list @@ Fmt.Dump.pair Class.pp Class.pp)
same_value
)
end
(** A signature is a shallow term shape where immediate subterms
are representative *)
module Signature = struct
type t = signature
let equal (s1 : t) s2 : bool =
match s1, s2 with
| Bool b1, Bool b2 -> b1 = b2
| App_fun (f1, []), App_fun (f2, []) -> Fun.equal f1 f2
| App_fun (f1, l1), App_fun (f2, l2) ->
Fun.equal f1 f2 && CCList.equal Class.equal l1 l2
| App_ho (f1, a1), App_ho (f2, a2) ->
Class.equal f1 f2 && Class.equal a1 a2
| Not a, Not b -> Class.equal a b
| If (a1, b1, c1), If (a2, b2, c2) ->
Class.equal a1 a2 && Class.equal b1 b2 && Class.equal c1 c2
| Eq (a1, b1), Eq (a2, b2) -> Class.equal a1 a2 && Class.equal b1 b2
| Opaque u1, Opaque u2 -> Class.equal u1 u2
| Bool _, _
| App_fun _, _
| App_ho _, _
| If _, _
| Eq _, _
| Opaque _, _
| Not _, _ ->
false
let hash (s : t) : int =
let module H = CCHash in
match s with
| Bool b -> H.combine2 10 (H.bool b)
| App_fun (f, l) -> H.combine3 20 (Fun.hash f) (H.list Class.hash l)
| App_ho (f, a) -> H.combine3 30 (Class.hash f) (Class.hash a)
| Eq (a, b) -> H.combine3 40 (Class.hash a) (Class.hash b)
| Opaque u -> H.combine2 50 (Class.hash u)
| If (a, b, c) ->
H.combine4 60 (Class.hash a) (Class.hash b) (Class.hash c)
| Not u -> H.combine2 70 (Class.hash u)
let pp out = function
| Bool b -> Fmt.bool out b
| App_fun (f, []) -> Fun.pp out f
| App_fun (f, l) ->
Fmt.fprintf out "(@[%a@ %a@])" Fun.pp f (Util.pp_list Class.pp) l
| App_ho (f, a) -> Fmt.fprintf out "(@[%a@ %a@])" Class.pp f Class.pp a
| Opaque t -> Class.pp out t
| Not u -> Fmt.fprintf out "(@[not@ %a@])" Class.pp u
| Eq (a, b) -> Fmt.fprintf out "(@[=@ %a@ %a@])" Class.pp a Class.pp b
| If (a, b, c) ->
Fmt.fprintf out "(@[ite@ %a@ %a@ %a@])" Class.pp a Class.pp b Class.pp c
end
module Sig_tbl = CCHashtbl.Make (Signature)
module T_tbl = CCHashtbl.Make (Term)
module T_b_tbl = Backtrackable_tbl.Make (Term)
type combine_task =
| CT_merge of node * node * explanation
| CT_set_val of node * value
type t = {
tst: term_store;
proof: proof;
tbl: node T_tbl.t; (* internalization [term -> node] *)
signatures_tbl: node Sig_tbl.t;
(* map a signature to the corresponding node in some equivalence class.
A signature is a [term_cell] in which every immediate subterm
that participates in the congruence/evaluation relation
is normalized (i.e. is its own representative).
The critical property is that all members of an equivalence class
that have the same "shape" (including head symbol)
have the same signature *)
pending: node Vec.t;
combine: combine_task Vec.t;
t_to_val: (node * value) T_b_tbl.t;
(* [repr -> (t,val)] where [repr = t] and [t := val] in the model *)
val_to_t: node T_b_tbl.t; (* [val -> t] where [t := val] in the model *)
undo: (unit -> unit) Backtrack_stack.t;
bitgen: Bits.bitfield_gen;
field_marked_explain: Bits.field;
(* used to mark traversed nodes when looking for a common ancestor *)
true_: node lazy_t;
false_: node lazy_t;
mutable model_mode: bool;
mutable on_pre_merge: ev_on_pre_merge list;
mutable on_post_merge: ev_on_post_merge list;
mutable on_new_term: ev_on_new_term list;
mutable on_conflict: ev_on_conflict list;
mutable on_propagate: ev_on_propagate list;
mutable on_is_subterm: ev_on_is_subterm list;
count_conflict: int Stat.counter;
count_props: int Stat.counter;
count_merge: int Stat.counter;
count_semantic_conflict: int Stat.counter;
}
(* TODO: an additional union-find to keep track, for each term,
of the terms they are known to be equal to, according
to the current explanation. That allows not to prove some equality
several times.
See "fast congruence closure and extensions", Nieuwenhuis&al, page 14 *)
and ev_on_pre_merge = t -> actions -> Class.t -> Class.t -> Expl.t -> unit
and ev_on_post_merge = t -> actions -> Class.t -> Class.t -> unit
and ev_on_new_term = t -> Class.t -> term -> unit
and ev_on_conflict = t -> th:bool -> lit list -> unit
and ev_on_propagate = t -> lit -> (unit -> lit list * proof_step) -> unit
and ev_on_is_subterm = Class.t -> term -> unit
let[@inline] size_ (r : repr) = r.n_size
let[@inline] n_true cc = Lazy.force cc.true_
let[@inline] n_false cc = Lazy.force cc.false_
let n_bool cc b =
if b then
n_true cc
else
n_false cc
let[@inline] term_store cc = cc.tst
let[@inline] proof cc = cc.proof
let allocate_bitfield ~descr cc =
Log.debugf 5 (fun k -> k "(@[cc.allocate-bit-field@ :descr %s@])" descr);
Bits.mk_field cc.bitgen
let[@inline] on_backtrack cc f : unit =
Backtrack_stack.push_if_nonzero_level cc.undo f
let[@inline] get_bitfield _cc field n = Class.get_field field n
let set_bitfield cc field b n =
let old = Class.get_field field n in
if old <> b then (
on_backtrack cc (fun () -> Class.set_field field old n);
Class.set_field field b n
)
(* check if [t] is in the congruence closure.
Invariant: [in_cc t ∧ do_cc t => forall u subterm t, in_cc u] *)
let[@inline] mem (cc : t) (t : term) : bool = T_tbl.mem cc.tbl t
(* print full state *)
let pp_full out (cc : t) : unit =
let pp_next out n = Fmt.fprintf out "@ :next %a" Class.pp n.n_next in
let pp_root out n =
if Class.is_root n then
Fmt.string out " :is-root"
else
Fmt.fprintf out "@ :root %a" Class.pp n.n_root
in
let pp_expl out n =
match n.n_expl with
| FL_none -> ()
| FL_some e ->
Fmt.fprintf out " (@[:forest %a :expl %a@])" Class.pp e.next Expl.pp
e.expl
in
let pp_n out n =
Fmt.fprintf out "(@[%a%a%a%a@])" Term.pp n.n_term pp_root n pp_next n
pp_expl n
and pp_sig_e out (s, n) =
Fmt.fprintf out "(@[<1>%a@ ~~> %a%a@])" Signature.pp s Class.pp n pp_root
n
in
Fmt.fprintf out
"(@[@{<yellow>cc.state@}@ (@[<hv>:nodes@ %a@])@ (@[<hv>:sig-tbl@ %a@])@])"
(Util.pp_iter ~sep:" " pp_n)
(T_tbl.values cc.tbl)
(Util.pp_iter ~sep:" " pp_sig_e)
(Sig_tbl.to_iter cc.signatures_tbl)
(* compute up-to-date signature *)
let update_sig (s : signature) : Signature.t =
View.map_view s ~f_f:(fun x -> x) ~f_t:find_ ~f_ts:(List.map find_)
(* find whether the given (parent) term corresponds to some signature
in [signatures_] *)
let[@inline] find_signature cc (s : signature) : repr option =
Sig_tbl.get cc.signatures_tbl s
(* add to signature table. Assume it's not present already *)
let add_signature cc (s : signature) (n : node) : unit =
assert (not @@ Sig_tbl.mem cc.signatures_tbl s);
Log.debugf 50 (fun k ->
k "(@[cc.add-sig@ %a@ ~~> %a@])" Signature.pp s Class.pp n);
on_backtrack cc (fun () -> Sig_tbl.remove cc.signatures_tbl s);
Sig_tbl.add cc.signatures_tbl s n
let push_pending cc t : unit =
Log.debugf 50 (fun k -> k "(@[<hv1>cc.push-pending@ %a@])" Class.pp t);
Vec.push cc.pending t
let merge_classes cc t u e : unit =
if t != u && not (same_class t u) then (
Log.debugf 50 (fun k ->
k "(@[<hv1>cc.push-combine@ %a ~@ %a@ :expl %a@])" Class.pp t Class.pp
u Expl.pp e);
Vec.push cc.combine @@ CT_merge (t, u, e)
)
(* re-root the explanation tree of the equivalence class of [n]
so that it points to [n].
postcondition: [n.n_expl = None] *)
let[@unroll 2] rec reroot_expl (cc : t) (n : node) : unit =
match n.n_expl with
| FL_none -> () (* already root *)
| FL_some { next = u; expl = e_n_u } ->
(* reroot to [u], then invert link between [u] and [n] *)
reroot_expl cc u;
u.n_expl <- FL_some { next = n; expl = e_n_u };
n.n_expl <- FL_none
let raise_conflict_ (cc : t) ~th (acts : actions) (e : lit list)
(p : proof_step) : _ =
Profile.instant "cc.conflict";
(* clear tasks queue *)
Vec.clear cc.pending;
Vec.clear cc.combine;
List.iter (fun f -> f cc ~th e) cc.on_conflict;
Stat.incr cc.count_conflict;
let (module A) = acts in
A.raise_conflict e p
let[@inline] all_classes cc : repr Iter.t =
T_tbl.values cc.tbl |> Iter.filter Class.is_root
(* find the closest common ancestor of [a] and [b] in the proof forest.
Precond:
- [a] and [b] are in the same class
- no node has the flag [field_marked_explain] on
Invariants:
- if [n] is marked, then all the predecessors of [n]
from [a] or [b] are marked too.
*)
let find_common_ancestor cc (a : node) (b : node) : node =
(* catch up to the other node *)
let rec find1 a =
if Class.get_field cc.field_marked_explain a then
a
else (
match a.n_expl with
| FL_none -> assert false
| FL_some r -> find1 r.next
)
in
let rec find2 a b =
if Class.equal a b then
a
else if Class.get_field cc.field_marked_explain a then
a
else if Class.get_field cc.field_marked_explain b then
b
else (
Class.set_field cc.field_marked_explain true a;
Class.set_field cc.field_marked_explain true b;
match a.n_expl, b.n_expl with
| FL_some r1, FL_some r2 -> find2 r1.next r2.next
| FL_some r, FL_none -> find1 r.next
| FL_none, FL_some r -> find1 r.next
| FL_none, FL_none -> assert false
(* no common ancestor *)
)
in
(* cleanup tags on nodes traversed in [find2] *)
let rec cleanup_ n =
if Class.get_field cc.field_marked_explain n then (
Class.set_field cc.field_marked_explain false n;
match n.n_expl with
| FL_none -> ()
| FL_some { next; _ } -> cleanup_ next
)
in
let n = find2 a b in
cleanup_ a;
cleanup_ b;
n
module Expl_state = struct
type t = {
mutable lits: Lit.t list;
mutable same_val: (Class.t * Class.t) list;
mutable th_lemmas: (Lit.t * (Lit.t * Lit.t list) list * proof_step) list;
}
let create () : t = { lits = []; same_val = []; th_lemmas = [] }
let[@inline] copy self : t = { self with lits = self.lits }
let[@inline] add_lit (self : t) lit = self.lits <- lit :: self.lits
let[@inline] add_th (self : t) lit hyps pr : unit =
self.th_lemmas <- (lit, hyps, pr) :: self.th_lemmas
let[@inline] add_same_val (self : t) n1 n2 : unit =
self.same_val <- (n1, n2) :: self.same_val
(** Does this explanation contain at least one merge caused by
"same value"? *)
let[@inline] is_semantic (self : t) : bool = self.same_val <> []
let merge self other =
let { lits = o_lits; th_lemmas = o_lemmas; same_val = o_same_val } =
other
in
self.lits <- List.rev_append o_lits self.lits;
self.th_lemmas <- List.rev_append o_lemmas self.th_lemmas;
self.same_val <- List.rev_append o_same_val self.same_val;
()
(* proof of [\/_i ¬lits[i]] *)
let proof_of_th_lemmas (self : t) (proof : proof) : proof_step =
let p_lits1 = Iter.of_list self.lits |> Iter.map Lit.neg in
let p_lits2 =
Iter.of_list self.th_lemmas
|> Iter.map (fun (lit_t_u, _, _) -> Lit.neg lit_t_u)
in
let p_cc =
P.add_step proof @@ Rules_.lemma_cc (Iter.append p_lits1 p_lits2)
in
let resolve_with_th_proof pr (lit_t_u, sub_proofs, pr_th) =
(* pr_th: [sub_proofs |- t=u].
now resolve away [sub_proofs] to get literals that were
asserted in the congruence closure *)
let pr_th =
List.fold_left
(fun pr_th (lit_i, hyps_i) ->
(* [hyps_i |- lit_i] *)
let lemma_i =
P.add_step proof
@@ Rules_.lemma_cc
Iter.(cons lit_i (of_list hyps_i |> map Lit.neg))
in
(* resolve [lit_i] away. *)
P.add_step proof
@@ Rules_.proof_res ~pivot:(Lit.term lit_i) lemma_i pr_th)
pr_th sub_proofs
in
P.add_step proof @@ Rules_.proof_res ~pivot:(Lit.term lit_t_u) pr_th pr
in
(* resolve with theory proofs responsible for some merges, if any. *)
List.fold_left resolve_with_th_proof p_cc self.th_lemmas
let to_resolved_expl (self : t) : Resolved_expl.t =
(* FIXME: package the th lemmas too *)
let { lits; same_val; th_lemmas = _ } = self in
let s2 = copy self in
let pr proof = proof_of_th_lemmas s2 proof in
{ Resolved_expl.lits; same_value = same_val; pr }
end
(* decompose explanation [e] into a list of literals added to [acc] *)
let rec explain_decompose_expl cc (st : Expl_state.t) (e : explanation) : unit
=
Log.debugf 5 (fun k -> k "(@[cc.decompose_expl@ %a@])" Expl.pp e);
match e with
| E_trivial -> ()
| E_congruence (n1, n2) ->
(match n1.n_sig0, n2.n_sig0 with
| Some (App_fun (f1, a1)), Some (App_fun (f2, a2)) ->
assert (Fun.equal f1 f2);
assert (List.length a1 = List.length a2);
List.iter2 (explain_equal_rec_ cc st) a1 a2
| Some (App_ho (f1, a1)), Some (App_ho (f2, a2)) ->
explain_equal_rec_ cc st f1 f2;
explain_equal_rec_ cc st a1 a2
| Some (If (a1, b1, c1)), Some (If (a2, b2, c2)) ->
explain_equal_rec_ cc st a1 a2;
explain_equal_rec_ cc st b1 b2;
explain_equal_rec_ cc st c1 c2
| _ -> assert false)
| E_lit lit -> Expl_state.add_lit st lit
| E_same_val (n1, n2) -> Expl_state.add_same_val st n1 n2
| E_theory (t, u, expl_sets, pr) ->
let sub_proofs =
List.map
(fun (t_i, u_i, expls_i) ->
let lit_i = A.CC.mk_lit_eq cc.tst t_i u_i in
(* use a separate call to [explain_expls] for each set *)
let sub = explain_expls cc expls_i in
Expl_state.merge st sub;
lit_i, sub.lits)
expl_sets
in
let lit_t_u = A.CC.mk_lit_eq cc.tst t u in
Expl_state.add_th st lit_t_u sub_proofs pr
| E_merge (a, b) -> explain_equal_rec_ cc st a b
| E_merge_t (a, b) ->
(* find nodes for [a] and [b] on the fly *)
(match T_tbl.find cc.tbl a, T_tbl.find cc.tbl b with
| a, b -> explain_equal_rec_ cc st a b
| exception Not_found ->
Error.errorf "expl: cannot find node(s) for %a, %a" Term.pp a Term.pp b)
| E_and (a, b) ->
explain_decompose_expl cc st a;
explain_decompose_expl cc st b
and explain_expls cc (es : explanation list) : Expl_state.t =
let st = Expl_state.create () in
List.iter (explain_decompose_expl cc st) es;
st
and explain_equal_rec_ (cc : t) (st : Expl_state.t) (a : node) (b : node) :
unit =
Log.debugf 5 (fun k ->
k "(@[cc.explain_loop.at@ %a@ =?= %a@])" Class.pp a Class.pp b);
assert (Class.equal (find_ a) (find_ b));
let ancestor = find_common_ancestor cc a b in
explain_along_path cc st a ancestor;
explain_along_path cc st b ancestor
(* explain why [a = parent_a], where [a -> ... -> target] in the
proof forest *)
and explain_along_path cc (st : Expl_state.t) (a : node) (target : node) :
unit =
let rec aux n =
if n == target then
()
else (
match n.n_expl with
| FL_none -> assert false
| FL_some { next = next_n; expl } ->
explain_decompose_expl cc st expl;
(* now prove [next_n = target] *)
aux next_n
)
in
aux a
(* add a term *)
let[@inline] rec add_term_rec_ cc t : node =
try T_tbl.find cc.tbl t with Not_found -> add_new_term_ cc t
(* add [t] to [cc] when not present already *)
and add_new_term_ cc (t : term) : node =
assert (not @@ mem cc t);
Log.debugf 15 (fun k -> k "(@[cc.add-term@ %a@])" Term.pp t);
let n = Class.make t in
(* register sub-terms, add [t] to their parent list, and return the
corresponding initial signature *)
let sig0 = compute_sig0 cc n in
n.n_sig0 <- sig0;
(* remove term when we backtrack *)
on_backtrack cc (fun () ->
Log.debugf 30 (fun k -> k "(@[cc.remove-term@ %a@])" Term.pp t);
T_tbl.remove cc.tbl t);
(* add term to the table *)
T_tbl.add cc.tbl t n;
if Option.is_some sig0 then
(* [n] might be merged with other equiv classes *)
push_pending cc n;
if not cc.model_mode then List.iter (fun f -> f cc n t) cc.on_new_term;
n
(* compute the initial signature of the given node *)
and compute_sig0 (self : t) (n : node) : Signature.t option =
(* add sub-term to [cc], and register [n] to its parents.
Note that we return the exact sub-term, to get proper
explanations, but we add to the sub-term's root's parent list. *)
let deref_sub (u : term) : node =
let sub = add_term_rec_ self u in
(* add [n] to [sub.root]'s parent list *)
(let sub_r = find_ sub in
let old_parents = sub_r.n_parents in
if Bag.is_empty old_parents && not self.model_mode then
(* first time it has parents: tell watchers that this is a subterm *)
List.iter (fun f -> f sub u) self.on_is_subterm;
on_backtrack self (fun () -> sub_r.n_parents <- old_parents);
sub_r.n_parents <- Bag.cons n sub_r.n_parents);
sub
in
let[@inline] return x = Some x in
match A.CC.view n.n_term with
| Bool _ | Opaque _ -> None
| Eq (a, b) ->
let a = deref_sub a in
let b = deref_sub b in
return @@ Eq (a, b)
| Not u -> return @@ Not (deref_sub u)
| App_fun (f, args) ->
let args = args |> Iter.map deref_sub |> Iter.to_list in
if args <> [] then
return @@ App_fun (f, args)
else
None
| App_ho (f, a) ->
let f = deref_sub f in
let a = deref_sub a in
return @@ App_ho (f, a)
| If (a, b, c) -> return @@ If (deref_sub a, deref_sub b, deref_sub c)
let[@inline] add_term cc t : node = add_term_rec_ cc t
let mem_term = mem
let set_as_lit cc (n : node) (lit : lit) : unit =
match n.n_as_lit with
| Some _ -> ()
| None ->
Log.debugf 15 (fun k ->
k "(@[cc.set-as-lit@ %a@ %a@])" Class.pp n Lit.pp lit);
on_backtrack cc (fun () -> n.n_as_lit <- None);
n.n_as_lit <- Some lit
(* is [n] true or false? *)
let n_is_bool_value (self : t) n : bool =
Class.equal n (n_true self) || Class.equal n (n_false self)
(* gather a pair [lits, pr], where [lits] is the set of
asserted literals needed in the explanation (which is useful for
the SAT solver), and [pr] is a proof, including sub-proofs for theory
merges. *)
let lits_and_proof_of_expl (self : t) (st : Expl_state.t) :
Lit.t list * proof_step =
let { Expl_state.lits; th_lemmas = _; same_val } = st in
assert (same_val = []);
let pr = Expl_state.proof_of_th_lemmas st self.proof in
lits, pr
(* main CC algo: add terms from [pending] to the signature table,
check for collisions *)
let rec update_tasks (cc : t) (acts : actions) : unit =
while not (Vec.is_empty cc.pending && Vec.is_empty cc.combine) do
while not @@ Vec.is_empty cc.pending do
task_pending_ cc (Vec.pop_exn cc.pending)
done;
while not @@ Vec.is_empty cc.combine do
task_combine_ cc acts (Vec.pop_exn cc.combine)
done
done
and task_pending_ cc (n : node) : unit =
(* check if some parent collided *)
match n.n_sig0 with
| None -> () (* no-op *)
| Some (Eq (a, b)) ->
(* if [a=b] is now true, merge [(a=b)] and [true] *)
if same_class a b then (
let expl = Expl.mk_merge a b in
Log.debugf 5 (fun k ->
k "(@[cc.pending.eq@ %a@ :r1 %a@ :r2 %a@])" Class.pp n Class.pp a
Class.pp b);
merge_classes cc n (n_true cc) expl
)
| Some (Not u) ->
(* [u = bool ==> not u = not bool] *)
let r_u = find_ u in
if Class.equal r_u (n_true cc) then (
let expl = Expl.mk_merge u (n_true cc) in
merge_classes cc n (n_false cc) expl
) else if Class.equal r_u (n_false cc) then (
let expl = Expl.mk_merge u (n_false cc) in
merge_classes cc n (n_true cc) expl
)
| Some s0 ->
(* update the signature by using [find] on each sub-node *)
let s = update_sig s0 in
(match find_signature cc s with
| None ->
(* add to the signature table [sig(n) --> n] *)
add_signature cc s n
| Some u when Class.equal n u -> ()
| Some u ->
(* [t1] and [t2] must be applications of the same symbol to
arguments that are pairwise equal *)
assert (n != u);
let expl = Expl.mk_congruence n u in
merge_classes cc n u expl)
and[@inline] task_combine_ cc acts = function
| CT_merge (a, b, e_ab) -> task_merge_ cc acts a b e_ab
| CT_set_val (n, v) -> task_set_val_ cc acts n v
and task_set_val_ cc acts n v =
let repr_n = find_ n in
(* - if repr(n) has value [v], do nothing
- else if repr(n) has value [v'], semantic conflict
- else add [repr(n) -> (n,v)] to cc.t_to_val *)
(match T_b_tbl.get cc.t_to_val repr_n.n_term with
| Some (n', v') when not (Term.equal v v') ->
(* semantic conflict *)
let expl = [ Expl.mk_merge n n' ] in
let expl_st = explain_expls cc expl in
let lits = expl_st.lits in
let tuples =
List.rev_map (fun (t, u) -> true, t.n_term, u.n_term) expl_st.same_val
in
let tuples = (false, n.n_term, n'.n_term) :: tuples in
Log.debugf 5 (fun k ->
k
"(@[cc.semantic-conflict.set-val@ (@[set-val %a@ := %a@])@ \
(@[existing-val %a@ := %a@])@])"
Class.pp n Term.pp v Class.pp n' Term.pp v');
Stat.incr cc.count_semantic_conflict;
let (module A) = acts in
A.raise_semantic_conflict lits tuples
| Some _ -> ()
| None -> T_b_tbl.add cc.t_to_val repr_n.n_term (n, v));
(* now for the reverse map, look in self.val_to_t for [v].
- if present, push a merge command with Expl.mk_same_value
- if not, add [v -> n] *)
match T_b_tbl.get cc.val_to_t v with
| None -> T_b_tbl.add cc.val_to_t v n
| Some n' when not (same_class n n') ->
merge_classes cc n n' (Expl.mk_same_value n n')
| Some _ -> ()
(* main CC algo: merge equivalence classes in [st.combine].
@raise Exn_unsat if merge fails *)
and task_merge_ cc acts a b e_ab : unit =
let ra = find_ a in
let rb = find_ b in
if not @@ Class.equal ra rb then (
assert (Class.is_root ra);
assert (Class.is_root rb);
Stat.incr cc.count_merge;
(* check we're not merging [true] and [false] *)
if
(Class.equal ra (n_true cc) && Class.equal rb (n_false cc))
|| (Class.equal rb (n_true cc) && Class.equal ra (n_false cc))
then (
Log.debugf 5 (fun k ->
k
"(@[<hv>cc.merge.true_false_conflict@ @[:r1 %a@ :t1 %a@]@ @[:r2 \
%a@ :t2 %a@]@ :e_ab %a@])"
Class.pp ra Class.pp a Class.pp rb Class.pp b Expl.pp e_ab);
let th = ref false in
(* TODO:
C1: P.true_neq_false
C2: lemma [lits |- true=false] (and resolve on theory proofs)
C3: r1 C1 C2
*)
let expl_st = Expl_state.create () in
explain_decompose_expl cc expl_st e_ab;
explain_equal_rec_ cc expl_st a ra;
explain_equal_rec_ cc expl_st b rb;
if Expl_state.is_semantic expl_st then (
(* conflict involving some semantic values *)
let lits = expl_st.lits in
let same_val =
expl_st.same_val
|> List.rev_map (fun (t, u) -> true, Class.term t, Class.term u)
in
assert (same_val <> []);
Stat.incr cc.count_semantic_conflict;
let (module A) = acts in
A.raise_semantic_conflict lits same_val
) else (
(* regular conflict *)
let lits, pr = lits_and_proof_of_expl cc expl_st in
raise_conflict_ cc ~th:!th acts (List.rev_map Lit.neg lits) pr
)
);
(* We will merge [r_from] into [r_into].
we try to ensure that [size ra <= size rb] in general, but always
keep values as representative *)
let r_from, r_into =
if n_is_bool_value cc ra then
rb, ra
else if n_is_bool_value cc rb then
ra, rb
else if size_ ra > size_ rb then
rb, ra
else
ra, rb
in
(* when merging terms with [true] or [false], possibly propagate them to SAT *)
let merge_bool r1 t1 r2 t2 =
if Class.equal r1 (n_true cc) then
propagate_bools cc acts r2 t2 r1 t1 e_ab true
else if Class.equal r1 (n_false cc) then
propagate_bools cc acts r2 t2 r1 t1 e_ab false
in
if not cc.model_mode then (
merge_bool ra a rb b;
merge_bool rb b ra a
);
(* perform [union r_from r_into] *)
Log.debugf 15 (fun k ->
k "(@[cc.merge@ :from %a@ :into %a@])" Class.pp r_from Class.pp r_into);
(* call [on_pre_merge] functions, and merge theory data items *)
if not cc.model_mode then (
(* explanation is [a=ra & e_ab & b=rb] *)
let expl =
Expl.mk_list [ e_ab; Expl.mk_merge a ra; Expl.mk_merge b rb ]
in
List.iter (fun f -> f cc acts r_into r_from expl) cc.on_pre_merge
);
((* parents might have a different signature, check for collisions *)
Class.iter_parents r_from (fun parent -> push_pending cc parent);
(* for each node in [r_from]'s class, make it point to [r_into] *)
Class.iter_class r_from (fun u ->
assert (u.n_root == r_from);
u.n_root <- r_into);
(* capture current state *)
let r_into_old_next = r_into.n_next in
let r_from_old_next = r_from.n_next in
let r_into_old_parents = r_into.n_parents in
let r_into_old_bits = r_into.n_bits in
(* swap [into.next] and [from.next], merging the classes *)
r_into.n_next <- r_from_old_next;
r_from.n_next <- r_into_old_next;
r_into.n_parents <- Bag.append r_into.n_parents r_from.n_parents;
r_into.n_size <- r_into.n_size + r_from.n_size;
r_into.n_bits <- Bits.merge r_into.n_bits r_from.n_bits;
(* on backtrack, unmerge classes and restore the pointers to [r_from] *)
on_backtrack cc (fun () ->
Log.debugf 30 (fun k ->
k "(@[cc.undo_merge@ :from %a@ :into %a@])" Class.pp r_from
Class.pp r_into);
r_into.n_bits <- r_into_old_bits;
r_into.n_next <- r_into_old_next;
r_from.n_next <- r_from_old_next;
r_into.n_parents <- r_into_old_parents;
(* NOTE: this must come after the restoration of [next] pointers,
otherwise we'd iterate on too big a class *)
Class.iter_class_ r_from (fun u -> u.n_root <- r_from);
r_into.n_size <- r_into.n_size - r_from.n_size));
(* check for semantic values, update the one of [r_into]
if [r_from] has a value *)
(match T_b_tbl.get cc.t_to_val r_from.n_term with
| None -> ()
| Some (n_from, v_from) ->
(match T_b_tbl.get cc.t_to_val r_into.n_term with
| None -> T_b_tbl.add cc.t_to_val r_into.n_term (n_from, v_from)
| Some (n_into, v_into) when not (Term.equal v_from v_into) ->
(* semantic conflict, including [n_from != n_into] in model *)
let expl =
[ e_ab; Expl.mk_merge r_from n_from; Expl.mk_merge r_into n_into ]
in
let expl_st = explain_expls cc expl in
let lits = expl_st.lits in
let tuples =
List.rev_map
(fun (t, u) -> true, t.n_term, u.n_term)
expl_st.same_val
in
let tuples = (false, n_from.n_term, n_into.n_term) :: tuples in
Log.debugf 5 (fun k ->
k
"(@[cc.semantic-conflict.post-merge@ (@[n-from %a@ := %a@])@ \
(@[n-into %a@ := %a@])@])"
Class.pp n_from Term.pp v_from Class.pp n_into Term.pp v_into);
Stat.incr cc.count_semantic_conflict;
let (module A) = acts in
A.raise_semantic_conflict lits tuples
| Some _ -> ()));
(* update explanations (a -> b), arbitrarily.
Note that here we merge the classes by adding a bridge between [a]
and [b], not their roots. *)
reroot_expl cc a;
assert (a.n_expl = FL_none);
(* on backtracking, link may be inverted, but we delete the one
that bridges between [a] and [b] *)
on_backtrack cc (fun () ->
match a.n_expl, b.n_expl with
| FL_some e, _ when Class.equal e.next b -> a.n_expl <- FL_none
| _, FL_some e when Class.equal e.next a -> b.n_expl <- FL_none
| _ -> assert false);
a.n_expl <- FL_some { next = b; expl = e_ab };
(* call [on_post_merge] *)
if not cc.model_mode then
List.iter (fun f -> f cc acts r_into r_from) cc.on_post_merge
)
(* we are merging [r1] with [r2==Bool(sign)], so propagate each term [u1]
in the equiv class of [r1] that is a known literal back to the SAT solver
and which is not the one initially merged.
We can explain the propagation with [u1 = t1 =e= t2 = r2==bool] *)
and propagate_bools cc acts r1 t1 r2 t2 (e_12 : explanation) sign : unit =
(* explanation for [t1 =e= t2 = r2] *)
let half_expl_and_pr =
lazy
(let st = Expl_state.create () in
explain_decompose_expl cc st e_12;
explain_equal_rec_ cc st r2 t2;
st)
in
(* TODO: flag per class, `or`-ed on merge, to indicate if the class
contains at least one lit *)
Class.iter_class r1 (fun u1 ->
(* propagate if:
- [u1] is a proper literal
- [t2 != r2], because that can only happen
after an explicit merge (no way to obtain that by propagation)
*)
match Class.as_lit u1 with
| Some lit when not (Class.equal r2 t2) ->
let lit =
if sign then
lit
else
Lit.neg lit
in
(* apply sign *)
Log.debugf 5 (fun k -> k "(@[cc.bool_propagate@ %a@])" Lit.pp lit);
(* complete explanation with the [u1=t1] chunk *)
let (lazy st) = half_expl_and_pr in
let st = Expl_state.copy st in
(* do not modify shared st *)
explain_equal_rec_ cc st u1 t1;
(* propagate only if this doesn't depend on some semantic values *)
if not (Expl_state.is_semantic st) then (
let reason () =
(* true literals explaining why t1=t2 *)
let guard = st.lits in
(* get a proof of [guard /\ ¬lit] being absurd, to propagate [lit] *)
Expl_state.add_lit st (Lit.neg lit);
let _, pr = lits_and_proof_of_expl cc st in
guard, pr
in
List.iter (fun f -> f cc lit reason) cc.on_propagate;
Stat.incr cc.count_props;
let (module A) = acts in
A.propagate lit ~reason
)
| _ -> ())
module Debug_ = struct
let pp out _ = Fmt.string out "cc"
end
let add_iter cc it : unit = it (fun t -> ignore @@ add_term_rec_ cc t)
let[@inline] push_level (self : t) : unit =
Backtrack_stack.push_level self.undo;
T_b_tbl.push_level self.t_to_val;
T_b_tbl.push_level self.val_to_t
let pop_levels (self : t) n : unit =
Vec.clear self.pending;
Vec.clear self.combine;
Log.debugf 15 (fun k ->
k "(@[cc.pop-levels %d@ :n-lvls %d@])" n
(Backtrack_stack.n_levels self.undo));
Backtrack_stack.pop_levels self.undo n ~f:(fun f -> f ());
T_b_tbl.pop_levels self.t_to_val n;
T_b_tbl.pop_levels self.val_to_t n;
()
(* run [f] in a local congruence closure level *)
let with_model_mode cc f =
assert (not cc.model_mode);
cc.model_mode <- true;
push_level cc;
CCFun.protect f ~finally:(fun () ->
pop_levels cc 1;
cc.model_mode <- false)
let get_model_for_each_class self : _ Iter.t =
assert self.model_mode;
all_classes self
|> Iter.filter_map (fun repr ->
match T_b_tbl.get self.t_to_val repr.n_term with
| Some (_, v) -> Some (repr, Class.iter_class repr, v)
| None -> None)
(* assert that this boolean literal holds.
if a lit is [= a b], merge [a] and [b];
otherwise merge the atom with true/false *)
let assert_lit cc lit : unit =
let t = Lit.term lit in
Log.debugf 15 (fun k -> k "(@[cc.assert-lit@ %a@])" Lit.pp lit);
let sign = Lit.sign lit in
match A.CC.view t with
| Eq (a, b) when sign ->
let a = add_term cc a in
let b = add_term cc b in
(* merge [a] and [b] *)
merge_classes cc a b (Expl.mk_lit lit)
| _ ->
(* equate t and true/false *)
let rhs =
if sign then
n_true cc
else
n_false cc
in
let n = add_term cc t in
(* TODO: ensure that this is O(1).
basically, just have [n] point to true/false and thus acquire
the corresponding value, so its superterms (like [ite]) can evaluate
properly *)
(* TODO: use oriented merge (force direction [n -> rhs]) *)
merge_classes cc n rhs (Expl.mk_lit lit)
let[@inline] assert_lits cc lits : unit = Iter.iter (assert_lit cc) lits
(* raise a conflict *)
let raise_conflict_from_expl cc (acts : actions) expl =
Log.debugf 5 (fun k ->
k "(@[cc.theory.raise-conflict@ :expl %a@])" Expl.pp expl);
let st = Expl_state.create () in
explain_decompose_expl cc st expl;
let lits, pr = lits_and_proof_of_expl cc st in
let c = List.rev_map Lit.neg lits in
let th = st.th_lemmas <> [] in
raise_conflict_ cc ~th acts c pr
let merge cc n1 n2 expl =
Log.debugf 5 (fun k ->
k "(@[cc.theory.merge@ :n1 %a@ :n2 %a@ :expl %a@])" Class.pp n1 Class.pp
n2 Expl.pp expl);
assert (T.Ty.equal (T.Term.ty n1.n_term) (T.Term.ty n2.n_term));
merge_classes cc n1 n2 expl
let[@inline] merge_t cc t1 t2 expl =
merge cc (add_term cc t1) (add_term cc t2) expl
let set_model_value (self : t) (t : term) (v : value) : unit =
assert self.model_mode;
(* only valid in model mode *)
match T_tbl.find_opt self.tbl t with
| None -> () (* ignore, th combination not needed *)
| Some n -> Vec.push self.combine (CT_set_val (n, v))
let explain_eq cc n1 n2 : Resolved_expl.t =
let st = Expl_state.create () in
explain_equal_rec_ cc st n1 n2;
(* FIXME: also need to return the proof? *)
Expl_state.to_resolved_expl st
let on_pre_merge cc f = cc.on_pre_merge <- f :: cc.on_pre_merge
let on_post_merge cc f = cc.on_post_merge <- f :: cc.on_post_merge
let on_new_term cc f = cc.on_new_term <- f :: cc.on_new_term
let on_conflict cc f = cc.on_conflict <- f :: cc.on_conflict
let on_propagate cc f = cc.on_propagate <- f :: cc.on_propagate
let on_is_subterm cc f = cc.on_is_subterm <- f :: cc.on_is_subterm
let create ?(stat = Stat.global) ?(on_pre_merge = []) ?(on_post_merge = [])
?(on_new_term = []) ?(on_conflict = []) ?(on_propagate = [])
?(on_is_subterm = []) ?(size = `Big) (tst : term_store) (proof : proof) :
t =
let size =
match size with
| `Small -> 128
| `Big -> 2048
in
let bitgen = Bits.mk_gen () in
let field_marked_explain = Bits.mk_field bitgen in
let rec cc =
{
tst;
proof;
tbl = T_tbl.create size;
signatures_tbl = Sig_tbl.create size;
bitgen;
t_to_val = T_b_tbl.create ~size:32 ();
val_to_t = T_b_tbl.create ~size:32 ();
model_mode = false;
on_pre_merge;
on_post_merge;
on_new_term;
on_conflict;
on_propagate;
on_is_subterm;
pending = Vec.create ();
combine = Vec.create ();
undo = Backtrack_stack.create ();
true_;
false_;
field_marked_explain;
count_conflict = Stat.mk_int stat "cc.conflicts";
count_props = Stat.mk_int stat "cc.propagations";
count_merge = Stat.mk_int stat "cc.merges";
count_semantic_conflict = Stat.mk_int stat "cc.semantic-conflicts";
}
and true_ = lazy (add_term cc (Term.bool tst true))
and false_ = lazy (add_term cc (Term.bool tst false)) in
ignore (Lazy.force true_ : node);
ignore (Lazy.force false_ : node);
cc
let[@inline] find_t cc t : repr =
let n = T_tbl.find cc.tbl t in
find_ n
let[@inline] check cc acts : unit =
Log.debug 5 "(cc.check)";
update_tasks cc acts
let check_inv_enabled_ = true (* XXX NUDGE *)
(* check some internal invariants *)
let check_inv_ (self : t) : unit =
if check_inv_enabled_ then (
Log.debug 2 "(cc.check-invariants)";
all_classes self
|> Iter.flat_map Class.iter_class
|> Iter.iter (fun n ->
match n.n_sig0 with
| None -> ()
| Some s ->
let s' = update_sig s in
let ok =
match find_signature self s' with
| None -> false
| Some r -> Class.equal r n.n_root
in
if not ok then
Log.debugf 0 (fun k ->
k "(@[cc.check.fail@ :n %a@ :sig %a@ :actual-sig %a@])"
Class.pp n Signature.pp s Signature.pp s'))
)
(* model: return all the classes *)
let get_model (cc : t) : repr Iter.t Iter.t =
check_inv_ cc;
all_classes cc |> Iter.map Class.iter_class
end
module Make_plugin (M : MONOID_ARG) : PLUGIN_BUILDER with module M = M = struct
module M = M
module CC = M.CC
module Class = CC.Class
module N_tbl = Backtrackable_tbl.Make (Class)
module Expl = CC.Expl
type term = CC.term
module type PL = PLUGIN with module CC = M.CC and module M = M
type plugin = (module PL)
module Make (A : sig
val size : int option
val cc : CC.t
end) : PL = struct
module M = M
module CC = CC
open A
(* repr -> value for the class *)
let values : M.t N_tbl.t = N_tbl.create ?size ()
(* bit in CC to filter out quickly classes without value *)
let field_has_value : Class.bitfield =
CC.allocate_bitfield ~descr:("monoid." ^ M.name ^ ".has-value") cc
let push_level () = N_tbl.push_level values
let pop_levels n = N_tbl.pop_levels values n
let n_levels () = N_tbl.n_levels values
let mem n =
let res = CC.get_bitfield cc field_has_value n in
assert (
if res then
N_tbl.mem values n
else
true);
res
let get n =
if CC.get_bitfield cc field_has_value n then
N_tbl.get values n
else
None
let on_new_term cc n (t : term) : unit =
(*Log.debugf 50 (fun k->k "(@[monoid[%s].on-new-term.try@ %a@])" M.name N.pp n);*)
let maybe_m, l = M.of_term cc n t in
(match maybe_m with
| Some v ->
Log.debugf 20 (fun k ->
k "(@[monoid[%s].on-new-term@ :n %a@ :value %a@])" M.name Class.pp n
M.pp v);
CC.set_bitfield cc field_has_value true n;
N_tbl.add values n v
| None -> ());
List.iter
(fun (n_u, m_u) ->
Log.debugf 20 (fun k ->
k "(@[monoid[%s].on-new-term.sub@ :n %a@ :sub-t %a@ :value %a@])"
M.name Class.pp n Class.pp n_u M.pp m_u);
let n_u = CC.find cc n_u in
if CC.get_bitfield cc field_has_value n_u then (
let m_u' =
try N_tbl.find values n_u
with Not_found ->
Error.errorf "node %a has bitfield but no value" Class.pp n_u
in
match M.merge cc n_u m_u n_u m_u' (Expl.mk_list []) with
| Error expl ->
Error.errorf
"when merging@ @[for node %a@],@ values %a and %a:@ conflict %a"
Class.pp n_u M.pp m_u M.pp m_u' CC.Expl.pp expl
| Ok m_u_merged ->
Log.debugf 20 (fun k ->
k
"(@[monoid[%s].on-new-term.sub.merged@ :n %a@ :sub-t %a@ \
:value %a@])"
M.name Class.pp n Class.pp n_u M.pp m_u_merged);
N_tbl.add values n_u m_u_merged
) else (
(* just add to [n_u] *)
CC.set_bitfield cc field_has_value true n_u;
N_tbl.add values n_u m_u
))
l;
()
let iter_all : _ Iter.t = N_tbl.to_iter values
let on_pre_merge cc acts n1 n2 e_n1_n2 : unit =
match get n1, get n2 with
| Some v1, Some v2 ->
Log.debugf 5 (fun k ->
k
"(@[monoid[%s].on_pre_merge@ (@[:n1 %a@ :val1 %a@])@ (@[:n2 %a@ \
:val2 %a@])@])"
M.name Class.pp n1 M.pp v1 Class.pp n2 M.pp v2);
(match M.merge cc n1 v1 n2 v2 e_n1_n2 with
| Ok v' ->
N_tbl.remove values n2;
(* only keep repr *)
N_tbl.add values n1 v'
| Error expl -> CC.raise_conflict_from_expl cc acts expl)
| None, Some cr ->
CC.set_bitfield cc field_has_value true n1;
N_tbl.add values n1 cr;
N_tbl.remove values n2 (* only keep reprs *)
| Some _, None -> () (* already there on the left *)
| None, None -> ()
(* setup *)
let () =
CC.on_new_term cc on_new_term;
CC.on_pre_merge cc on_pre_merge;
()
end
let create_and_setup ?size (cc : CC.t) : plugin =
(module Make (struct
let size = size
let cc = cc
end))
end