sidekick/src/core/internal.ml
2016-07-29 23:20:31 +02:00

1161 lines
40 KiB
OCaml

(*
MSAT is free software, using the Apache license, see file LICENSE
Copyright 2014 Guillaume Bury
Copyright 2014 Simon Cruanes
*)
module Make
(St : Solver_types.S)
(Plugin : Plugin_intf.S with type term = St.term
and type formula = St.formula
and type proof = St.proof)
(Dummy: sig end)
= struct
module Proof = Res.Make(St)
open St
exception Sat
exception Unsat
exception UndecidedLit
exception Restart
exception Conflict of clause
(* Singleton type containing the current state *)
type env = {
(* Clauses are simplified for eficiency purposes. In the following
vectors, the comments actually refer to the original non-simplified
clause. *)
clauses_hyps : clause Vec.t;
(* clauses assumed (subject to user levels) *)
clauses_learnt : clause Vec.t;
(* learnt clauses (tautologies true at any time, whatever the user level) *)
clauses_to_add : clause Stack.t;
(* Clauses either assumed or pushed by the theory, waiting to be added. *)
mutable unsat_conflict : clause option;
(* conflict clause at [base_level], if any *)
mutable next_decision : atom option;
(* When the last conflict was a semantic one, this stores the next decision to make *)
elt_queue : t Vec.t;
(* decision stack + propagated elements (atoms or assignments).
Also called "trail" in some solvers. *)
elt_levels : int Vec.t;
(* decision levels in [trail] *)
th_levels : Plugin.level Vec.t;
(* theory states corresponding to elt_levels *)
mutable th_head : int;
(* Start offset in the queue {!elt_queue} of
unit facts not yet seen by the theory. *)
mutable elt_head : int;
(* Start offset in the queue {!elt_queue} of
unit facts to propagate, within the trail *)
mutable base_level: int;
(* the decision level under which we cannot backtrack, that is,
the one after we pushed local assumptions *)
(* invariant:
- during propagation, th_head <= elt_head
- then, once elt_head reaches length elt_queue, Th.assume is
called so that th_head can catch up with elt_head
- this is repeated until a fixpoint is reached;
- before a decision (and after the fixpoint),
th_head = elt_head = length elt_queue
*)
mutable simpDB_props : int;
(* remaining number of propagations before the next call to [simplify ()] *)
mutable simpDB_assigns : int;
(* number of toplevel assignments since last call to [simplify ()] *)
order : Iheap.t;
(* Heap ordered by variable activity *)
var_decay : float;
(* inverse of the activity factor for variables. Default 1/0.999 *)
clause_decay : float;
(* inverse of the activity factor for clauses. Default 1/0.95 *)
mutable var_incr : float;
(* increment for variables' activity *)
mutable clause_incr : float;
(* increment for clauses' activity *)
remove_satisfied : bool;
(* Wether to remove satisfied learnt clauses when simplifying *)
restart_inc : float;
(* multiplicative factor for restart limit, default 1.5 *)
mutable restart_first : int;
(* intial restart limit, default 100 *)
learntsize_inc : float;
(* multiplicative factor for [learntsize_factor] at each restart, default 1.1 *)
mutable learntsize_factor : float;
(* initial limit for the number of learnt clauses, 1/3 of initial
number of clauses by default *)
mutable starts : int;
mutable decisions : int;
mutable propagations : int;
mutable conflicts : int;
mutable clauses_literals : int;
mutable learnts_literals : int;
mutable nb_init_clauses : int;
}
(* Starting environment. *)
let env = {
unsat_conflict = None;
next_decision = None;
clauses_hyps = Vec.make 0 dummy_clause;
clauses_learnt = Vec.make 0 dummy_clause;
clauses_to_add = Stack.create ();
th_head = 0;
elt_head = 0;
elt_queue = Vec.make 601 (of_atom dummy_atom);
elt_levels = Vec.make 601 (-1);
th_levels = Vec.make 100 Plugin.dummy;
base_level = 0;
order = Iheap.init 0;
var_incr = 1.;
clause_incr = 1.;
var_decay = 1. /. 0.95;
clause_decay = 1. /. 0.999;
simpDB_assigns = -1;
simpDB_props = 0;
remove_satisfied = false;
restart_inc = 1.5;
restart_first = 100;
learntsize_factor = 1. /. 3. ;
learntsize_inc = 1.1;
starts = 0;
decisions = 0;
propagations = 0;
conflicts = 0;
clauses_literals = 0;
learnts_literals = 0;
nb_init_clauses = 0;
}
(* Misc functions *)
let to_float i = float_of_int i
let to_int f = int_of_float f
let nb_clauses () = Vec.size env.clauses_hyps
let nb_vars () = St.nb_elt ()
let decision_level () = Vec.size env.elt_levels
let f_weight i j =
get_elt_weight (St.get_elt j) < get_elt_weight (St.get_elt i)
(* Are the assumptions currently unsat ? *)
let is_unsat () =
match env.unsat_conflict with
| Some _ -> true
| None -> false
(* Iteration over subterms.
When incrementing activity, we want to be able to iterate over
all subterms of a formula. However, the function provided by the theory
may be costly (if it walks a tree-like structure, and does some processing
to ignore some subterms for instance), so we want to 'cache' to list
of subterms of each formula, so we have a field [v_assignable]
directly in variables to do so. *)
let iter_sub f v =
if St.mcsat then
match v.v_assignable with
| Some l -> List.iter f l
| None -> assert false
(* When we have a new literal,
we need to first create the list of its subterms. *)
let atom (f:St.formula) : atom =
let res = add_atom f in
if St.mcsat then
begin match res.var.v_assignable with
| Some _ -> ()
| None ->
let l = ref [] in
Plugin.iter_assignable (fun t -> l := add_term t :: !l) res.var.pa.lit;
res.var.v_assignable <- Some !l;
end;
res
(* Variable and literal activity.
Activity is used to decide on which variable to decide when propagation
is done. Uses a heap (implemented in Iheap), to keep track of variable activity.
To be more general, the heap only stores the variable/literal id (i.e an int).
When we add a variable (which wraps a formula), we also need to add all
its subterms.
*)
let rec insert_var_order = function
| E_lit l -> Iheap.insert f_weight env.order l.lid
| E_var v ->
Iheap.insert f_weight env.order v.vid;
iter_sub (fun t -> insert_var_order (E_lit t)) v
(* Rather than iterate over all the heap when we want to decrease all the
variables/literals activity, we instead increase the value by which
we increase the activity of 'interesting' var/lits. *)
let var_decay_activity () =
env.var_incr <- env.var_incr *. env.var_decay
let clause_decay_activity () =
env.clause_incr <- env.clause_incr *. env.clause_decay
(* increase activity of [v] *)
let var_bump_activity_aux v =
v.v_weight <- v.v_weight +. env.var_incr;
if v.v_weight > 1e100 then begin
for i = 0 to (St.nb_elt ()) - 1 do
set_elt_weight (St.get_elt i) ((get_elt_weight (St.get_elt i)) *. 1e-100)
done;
env.var_incr <- env.var_incr *. 1e-100;
end;
if Iheap.in_heap env.order v.vid then
Iheap.decrease f_weight env.order v.vid
(* increase activity of literal [l] *)
let lit_bump_activity_aux (l:lit): unit =
l.l_weight <- l.l_weight +. env.var_incr;
if l.l_weight > 1e100 then begin
for i = 0 to (St.nb_elt ()) - 1 do
set_elt_weight (St.get_elt i) ((get_elt_weight (St.get_elt i)) *. 1e-100)
done;
env.var_incr <- env.var_incr *. 1e-100;
end;
if Iheap.in_heap env.order l.lid then
Iheap.decrease f_weight env.order l.lid
(* increase activity of var [v] *)
let var_bump_activity (v:var): unit =
var_bump_activity_aux v;
iter_sub lit_bump_activity_aux v
(* increase activity of clause [c] *)
let clause_bump_activity (c:clause) : unit =
c.activity <- c.activity +. env.clause_incr;
if c.activity > 1e20 then begin
for i = 0 to (Vec.size env.clauses_learnt) - 1 do
(Vec.get env.clauses_learnt i).activity <-
(Vec.get env.clauses_learnt i).activity *. 1e-20;
done;
env.clause_incr <- env.clause_incr *. 1e-20
end
(* Simplification of clauses.
When adding new clauses, it is desirable to 'simplify' them, i.e
minimize the amount of literals in it, because it greatly reduces
the search space for new watched literals during propagation.
Additionally, we have to partition the lits, to ensure the watched
literals (which are the first two lits of the clause) are appropriate.
Indeed, it is better to watch true literals, and then unassigned literals.
Watching false literals should be a last resort, and come with constraints
(see add_clause).
*)
exception Trivial
(* [arr_to_list a i] converts [a.(i), ... a.(length a-1)] into a list *)
let arr_to_list arr i : _ list =
if i >= Array.length arr then []
else Array.to_list (Array.sub arr i (Array.length arr - i))
(* Partition literals for new clauses, into:
- true literals (maybe makes the clause trivial if the lit is proved true at level 0)
- unassigned literals, yet to be decided
- false literals (not suitable to watch, those at level 0 can be removed from the clause)
Clauses that propagated false lits are remembered to reconstruct resolution proofs.
*)
let partition root atoms : atom list * clause list =
let rec partition_aux root trues unassigned falses history i =
if i >= Array.length atoms then
trues @ unassigned @ falses, history
else begin
let a = atoms.(i) in
if a.is_true then
let l = a.var.v_level in
if l = 0 then
raise Trivial (* A var true at level 0 gives a trivially true clause *)
else
(a :: trues) @ unassigned @ falses @
(arr_to_list atoms (i + 1)), history
else if a.neg.is_true then
let l = a.var.v_level in
if 0 <= l && l <= root then begin
match a.var.reason with
| None | Some Decision -> assert false
(* The var must have a reason, and it cannot be a decision/assumption,
its level is below root level. *)
| Some (Bcp cl) ->
partition_aux root trues unassigned falses (cl :: history) (i + 1)
(* A var false at level 0 can be eliminated from the clause,
but we need to kepp in mind that we used another clause to simplify it. *)
| Some (Semantic n) when 0 <= n && n <= root ->
partition_aux root trues unassigned falses history (i + 1)
(* Semantic propagations at level 0 are, well not easy to deal with,
this shouldn't really happen actually (because semantic propagations
at level 0 should come with a proof). *)
(* TODO: get a proof of the propagation. *)
| _ -> assert false
end else
partition_aux root trues unassigned (a::falses) history (i + 1)
else
partition_aux root trues (a::unassigned) falses history (i + 1)
end
in
assert (0 <= root);
partition_aux root [] [] [] [] 0
(* Making a decision.
Before actually creatig a new decision level, we check that
all propagations have been done and propagated to the theory,
i.e that the theoriy state indeed takes into account the whole
stack of literals
i.e we have indeed reached a propagation fixpoint before making
a new decision *)
let new_decision_level() =
assert (env.th_head = Vec.size env.elt_queue);
assert (env.elt_head = Vec.size env.elt_queue);
Vec.push env.elt_levels (Vec.size env.elt_queue);
Vec.push env.th_levels (Plugin.current_level ()); (* save the current theory state *)
()
(* Attach/Detach a clause.
A clause is attached (to its watching lits) when it is first added,
either because it is assumed or learnt.
A clause is detached once it dies (because of pop())
*)
let attach_clause c =
if not c.attached then begin
Log.debugf 60 "Attaching %a" (fun k -> k St.pp_clause c);
c.attached <- true;
Vec.push c.atoms.(0).neg.watched c;
Vec.push c.atoms.(1).neg.watched c;
end
let detach_clause c =
if c.attached then begin
c.attached <- false;
Log.debugf 10 "Removing clause @[%a@]" (fun k->k St.pp_clause c);
Vec.remove c.atoms.(0).neg.watched c;
Vec.remove c.atoms.(1).neg.watched c;
end
(* Is a clause satisfied ? *)
let satisfied c = Array_util.exists (fun atom -> atom.is_true) c.atoms
(* Backtracking.
Used to backtrack, i.e cancel down to [lvl] excluded,
i.e we want to go back to the state the solver was in
when decision level [lvl] was created. *)
let cancel_until lvl =
assert (lvl >= env.base_level);
(* Nothing to do if we try to backtrack to a non-existent level. *)
if decision_level () > lvl then begin
Log.debugf 5 "Backtracking to lvl %d" (fun k -> k lvl);
(* We set the head of the solver and theory queue to what it was. *)
env.elt_head <- Vec.get env.elt_levels lvl;
env.th_head <- env.elt_head;
(* Now we need to cleanup the vars that are not valid anymore
(i.e to the right of elt_head in the queue. *)
for c = env.elt_head to Vec.size env.elt_queue - 1 do
match (Vec.get env.elt_queue c) with
(* A literal is unassigned, we nedd to add it back to
the heap of potentially assignable literals, unless it has
a level lower than [lvl], in which case we just move it back. *)
| Lit l ->
if l.l_level <= lvl then begin
Vec.set env.elt_queue env.elt_head (of_lit l);
env.elt_head <- env.elt_head + 1
end else begin
l.assigned <- None;
l.l_level <- -1;
insert_var_order (elt_of_lit l)
end
(* A variable is not true/false anymore, one of two things can happen: *)
| Atom a ->
if a.var.v_level <= lvl then begin
(* It is a semantic propagation, which can be late, and has a level
lower than where we backtrack, so we just move it to the head
of the queue, to be propagated again. *)
Vec.set env.elt_queue env.elt_head (of_atom a);
env.elt_head <- env.elt_head + 1
end else begin
(* it is a result of bolean propagation, or a semantic propagation
with a level higher than the level to which we backtrack,
in that case, we simply unset its value and reinsert it into the heap. *)
a.is_true <- false;
a.neg.is_true <- false;
a.var.v_level <- -1;
a.var.reason <- None;
insert_var_order (elt_of_var a.var)
end
done;
(* Recover the right theory state. *)
Plugin.backtrack (Vec.get env.th_levels lvl);
(* Resize the vectors according to their new size. *)
Vec.shrink env.elt_queue ((Vec.size env.elt_queue) - env.elt_head);
Vec.shrink env.elt_levels ((Vec.size env.elt_levels) - lvl);
Vec.shrink env.th_levels ((Vec.size env.th_levels) - lvl);
end;
assert (Vec.size env.elt_levels = Vec.size env.th_levels);
()
(* Unsatisfiability is signaled through an exception, since it can happen
in multiple places (adding new clauses, or solving for instance). *)
let report_unsat ({atoms=atoms} as confl) : _ =
Log.debugf 5 "@[Unsat conflict: %a@]" (fun k -> k St.pp_clause confl);
env.unsat_conflict <- Some confl;
raise Unsat
(* Simplification of boolean propagation reasons.
When doing boolean propagation *at level 0*, it can happen
that the clause cl, which propagates a formula, also contains
other formulas, but has been simplified. in which case, we
need to rebuild a clause with correct history, in order to
be able to build a correct proof at the end of proof search. *)
let simpl_reason : reason -> reason = function
| (Bcp cl) as r ->
let l, history = partition env.base_level cl.atoms in
begin match l with
| [ a ] ->
if history = [] then r
(* no simplification has been done, so [cl] is actually a clause with only
[a], so it is a valid reason for propagating [a]. *)
else
(* Clauses in [history] have been used to simplify [cl] into a clause [tmp_cl]
with only one formula (which is [a]). So we explicitly create that clause
and set it as the cause for the propagation of [a], that way we can
rebuild the whole resolution tree when we want to prove [a]. *)
Bcp (make_clause (fresh_tname ()) l (History (cl :: history)))
| _ -> assert false
end
| r -> r
(* Boolean propagation.
Wrapper function for adding a new propagated formula. *)
let enqueue_bool a ~level:lvl reason : unit =
if a.neg.is_true then begin
Log.debugf 0 "Trying to enqueue a false literal: %a" (fun k->k St.pp_atom a);
assert false
end;
if not a.is_true then begin
assert (a.var.v_level < 0 && a.var.reason = None && lvl >= 0);
let reason =
if lvl > env.base_level then reason
else simpl_reason reason
in
a.is_true <- true;
a.var.v_level <- lvl;
a.var.reason <- Some reason;
Vec.push env.elt_queue (of_atom a);
Log.debugf 20 "Enqueue (%d): %a"
(fun k->k (Vec.size env.elt_queue) pp_atom a)
end
(* MCsat semantic assignment *)
let enqueue_assign l value lvl =
match l.assigned with
| Some _ ->
Log.debugf 0 "Trying to assign an already assigned literal: %a"
(fun k -> k St.pp_lit l);
assert false
| None ->
assert (l.l_level < 0);
l.assigned <- Some value;
l.l_level <- lvl;
Vec.push env.elt_queue (of_lit l);
()
(* evaluate an atom for MCsat, if it's not assigned
by boolean propagation/decision *)
let th_eval a : bool option =
if a.is_true || a.neg.is_true then None
else match Plugin.eval a.lit with
| Plugin_intf.Unknown -> None
| Plugin_intf.Valued (b, lvl) ->
let atom = if b then a else a.neg in
enqueue_bool atom ~level:lvl (Semantic lvl);
Some b
(* conflict analysis: find the list of atoms of [l] that have the
maximal level *)
let max_lvl_atoms (l:atom list) : int * atom list =
List.fold_left
(fun (max_lvl, acc) a ->
if a.var.v_level = max_lvl then (max_lvl, a :: acc)
else if a.var.v_level > max_lvl then (a.var.v_level, [a])
else (max_lvl, acc))
(0, []) l
(* find which level to backtrack to, given a conflict clause
and a boolean stating whether it is
a UIP ("Unique Implication Point")
precond: the atom list is sorted by decreasing decision level *)
let backtrack_lvl ~is_uip : atom list -> int = function
| [] -> 0
| [a] ->
assert is_uip;
0
| a :: b :: r ->
assert(a.var.v_level > env.base_level);
if is_uip then (
(* backtrack below [a], so we can propagate [not a] *)
assert(a.var.v_level > b.var.v_level);
b.var.v_level
) else (
assert (a.var.v_level = b.var.v_level);
assert (a.var.v_level >= env.base_level);
max (a.var.v_level - 1) env.base_level
)
(* result of conflict analysis, containing the learnt clause and some
additional info.
invariant: cr_history's order matters, as its head is later used
during pop operations to determine the origin of a clause/conflict
(boolean conflict i.e hypothesis, or theory lemma) *)
type conflict_res = {
cr_backtrack_lvl : int; (* level to backtrack to *)
cr_learnt: atom list; (* lemma learnt from conflict *)
cr_history: clause list; (* justification *)
cr_is_uip: bool; (* conflict is UIP? *)
}
(* conflict analysis for MCsat
The idea is to walk the trail/elt_queue starting from the most recent
atom, and perform resolution steps with each propagation reason, until
the First UIP clause is found, or we get semantic propagations
at the highest level (see mcsat paper for more explications).
*)
let analyze_mcsat c_clause : conflict_res =
let tr_ind = ref (Vec.size env.elt_queue) in
let is_uip = ref false in
let c = ref (Proof.to_list c_clause) in
let history = ref [c_clause] in
clause_bump_activity c_clause;
let is_semantic a = match a.var.reason with
| Some Semantic _ -> true
| _ -> false
in
try
while true do
let lvl, atoms = max_lvl_atoms !c in
if lvl <= env.base_level then raise Exit;
match atoms with
| [] | [_] ->
is_uip := true;
raise Exit
| _ when List.for_all is_semantic atoms ->
raise Exit
| _ ->
decr tr_ind;
Log.debugf 20 "Looking at trail element %d" (fun k->k !tr_ind);
match Vec.get env.elt_queue !tr_ind with
| Lit _ -> ()
| Atom a ->
begin match a.var.reason with
| Some (Bcp d) ->
(* resolution step *)
let tmp, res = Proof.resolve (Proof.merge !c (Proof.to_list d)) in
begin match tmp with
| [] -> ()
| [b] when b == a.var.pa ->
clause_bump_activity d;
var_bump_activity a.var;
history := d :: !history;
c := res
| _ -> assert false
end
| None | Some Decision | Some Semantic _ -> ()
end
done; assert false
with Exit ->
let learnt =
List.fast_sort
(fun a b -> Pervasives.compare b.var.v_level a.var.v_level) !c
in
let blevel = backtrack_lvl !is_uip learnt in
{ cr_backtrack_lvl = blevel;
cr_learnt= learnt;
cr_history = List.rev !history;
cr_is_uip = !is_uip;
}
let get_atom i =
match Vec.get env.elt_queue i with
| Lit _ -> assert false | Atom x -> x
(* conflict analysis for SAT
Same idea as the mcsat analyze function (without semantic propagations),
except we look the the Last UIP (TODO: check ?), and do it in an imperative
and efficient manner. *)
let analyze_sat c_clause : conflict_res =
let pathC = ref 0 in
let learnt = ref [] in
let cond = ref true in
let blevel = ref 0 in
let seen = ref [] in
let c = ref c_clause in
let tr_ind = ref (Vec.size env.elt_queue - 1) in
let size = ref 1 in
let history = ref [] in
assert (decision_level () > 0);
while !cond do
begin match !c.cpremise with
| History _ -> clause_bump_activity !c
| Hyp | Lemma _ -> ()
end;
history := !c :: !history;
(* visit the current predecessors *)
for j = 0 to Array.length !c.atoms - 1 do
let q = !c.atoms.(j) in
assert (q.is_true || q.neg.is_true && q.var.v_level >= 0); (* unsure? *)
if q.var.v_level <= 0 then begin
assert (q.neg.is_true);
match q.var.reason with
| Some Bcp cl -> history := cl :: !history
| _ -> assert false
end;
if not q.var.seen then begin
q.var.seen <- true;
seen := q :: !seen;
if q.var.v_level > 0 then begin
var_bump_activity q.var;
if q.var.v_level >= decision_level () then begin
incr pathC
end else begin
learnt := q :: !learnt;
incr size;
blevel := max !blevel q.var.v_level
end
end
end
done;
(* look for the next node to expand *)
while not (get_atom !tr_ind).var.seen do decr tr_ind done;
decr pathC;
let p = get_atom !tr_ind in
decr tr_ind;
match !pathC, p.var.reason with
| 0, _ ->
cond := false;
learnt := p.neg :: (List.rev !learnt)
| n, Some Bcp cl ->
c := cl
| n, _ -> assert false
done;
List.iter (fun q -> q.var.seen <- false) !seen;
{ cr_backtrack_lvl= !blevel;
cr_learnt= !learnt;
cr_history= List.rev !history;
cr_is_uip = true;
}
let analyze c_clause : conflict_res =
if St.mcsat
then analyze_mcsat c_clause
else analyze_sat c_clause
(* add the learnt clause to the clause database, propagate, etc. *)
let record_learnt_clause (confl:clause) (cr:conflict_res): unit =
begin match cr.cr_learnt with
| [] -> assert false
| [fuip] ->
assert (cr.cr_backtrack_lvl = 0);
if fuip.neg.is_true then
report_unsat confl
else begin
let name = fresh_lname () in
let uclause = make_clause name cr.cr_learnt (History cr.cr_history) in
Vec.push env.clauses_learnt uclause;
(* no need to attach [uclause], it is true at level 0 *)
enqueue_bool fuip ~level:0 (Bcp uclause)
end
| fuip :: _ ->
let name = fresh_lname () in
let lclause = make_clause name cr.cr_learnt (History cr.cr_history) in
Vec.push env.clauses_learnt lclause;
attach_clause lclause;
clause_bump_activity lclause;
if cr.cr_is_uip then
enqueue_bool fuip ~level:cr.cr_backtrack_lvl (Bcp lclause)
else begin
env.next_decision <- Some fuip.neg
end
end;
var_decay_activity ();
clause_decay_activity ()
(* process a conflict:
- learn clause
- backtrack
- report unsat if conflict at level 0
*)
let add_boolean_conflict (confl:clause): unit =
env.next_decision <- None;
env.conflicts <- env.conflicts + 1;
assert (decision_level() >= env.base_level);
if decision_level() = env.base_level
|| Array_util.for_all (fun a -> a.var.v_level <= env.base_level) confl.atoms then
report_unsat confl; (* Top-level conflict *)
let cr = analyze confl in
cancel_until (max cr.cr_backtrack_lvl env.base_level);
record_learnt_clause confl cr
(* Add a new clause, simplifying, propagating, and backtracking if
the clause is false in the current trail *)
let add_clause ?(force=false) (init:clause) : unit =
Log.debugf 90 "Adding clause:@[<hov>%a@]" (fun k -> k St.pp_clause init);
let vec = match init.cpremise with
| Hyp -> env.clauses_hyps
| Lemma _ -> env.clauses_learnt
| History _ -> assert false
in
try
let atoms, history = partition 0 init.atoms in
let clause =
if history = [] then init
else make_clause ?tag:init.tag (fresh_name ()) atoms (History (init :: history))
in
Log.debugf 4 "New clause:@ @[%a@]" (fun k->k St.pp_clause clause);
Vec.push vec clause;
match atoms with
| [] ->
report_unsat clause
| [a] ->
Log.debugf 5 "New unit clause, propagating : %a" (fun k->k St.pp_atom a);
cancel_until env.base_level;
if a.neg.is_true then begin
report_unsat clause
end else
enqueue_bool a 0 (Bcp clause)
| a::b::_ ->
if a.neg.is_true then begin
(* Atoms need to be sorted in decreasing order of decision level,
or we might watch the wrong literals. *)
Array.sort
(fun a b -> compare b.var.v_level a.var.v_level)
clause.atoms;
attach_clause clause;
add_boolean_conflict clause
end else begin
attach_clause clause;
if b.neg.is_true && not a.is_true && not a.neg.is_true then begin
let lvl = List.fold_left (fun m a -> max m a.var.v_level) 0 atoms in
cancel_until (max lvl env.base_level);
enqueue_bool a lvl (Bcp clause)
end
end
with Trivial ->
Vec.push vec init;
Log.debugf 5 "Trivial clause ignored : @[%a@]" (fun k->k St.pp_clause init)
let flush_clauses () =
if not (Stack.is_empty env.clauses_to_add) then begin
let nbv = St.nb_elt () in
let nbc = env.nb_init_clauses + Stack.length env.clauses_to_add in
Iheap.grow_to_by_double env.order nbv;
St.iter_elt insert_var_order;
Vec.grow_to_by_double env.clauses_hyps nbc;
Vec.grow_to_by_double env.clauses_learnt nbc;
env.nb_init_clauses <- nbc;
while not (Stack.is_empty env.clauses_to_add) do
let c = Stack.pop env.clauses_to_add in
add_clause c
done
end
type watch_res =
| Watch_kept
| Watch_removed
(* boolean propagation.
[a] is the false atom, one of [c]'s two watch literals
[i] is the index of [c] in [a.watched]
@return whether [c] was removed from [a.watched]
*)
let propagate_in_clause (a:atom) (c:clause) (i:int): watch_res =
let atoms = c.atoms in
let first = atoms.(0) in
if first == a.neg then (
(* false lit must be at index 1 *)
atoms.(0) <- atoms.(1);
atoms.(1) <- first
) else assert (a.neg == atoms.(1));
let first = atoms.(0) in
if first.is_true
then Watch_kept (* true clause, keep it in watched *)
else (
try (* look for another watch lit *)
for k = 2 to Array.length atoms - 1 do
let ak = atoms.(k) in
if not (ak.neg.is_true) then begin
(* watch lit found: update and exit *)
atoms.(1) <- ak;
atoms.(k) <- a.neg;
(* remove [c] from [a.watched], add it to [ak.neg.watched] *)
Vec.push ak.neg.watched c;
assert (Vec.get a.watched i == c);
Vec.fast_remove a.watched i;
raise Exit
end
done;
(* no watch lit found *)
if first.neg.is_true || (th_eval first = Some false) then begin
(* clause is false *)
env.elt_head <- Vec.size env.elt_queue;
raise (Conflict c)
end else begin
(* clause is unit, keep the same watches, but propagate *)
enqueue_bool first (decision_level ()) (Bcp c)
end;
Watch_kept
with Exit ->
Watch_removed
)
(* propagate atom [a], which was just decided. This checks every
clause watching [a] to see if the clause is false, unit, or has
other possible watches
@param res the optional conflict clause that the propagation might trigger *)
let propagate_atom a (res:clause option ref) : unit =
let watched = a.watched in
begin
try
let rec aux i =
if i >= Vec.size watched then ()
else (
let c = Vec.get watched i in
assert c.attached;
let j = match propagate_in_clause a c i with
| Watch_kept -> i+1
| Watch_removed -> i (* clause at this index changed *)
in
aux j
)
in
aux 0
with Conflict c ->
assert (!res = None);
res := Some c
end;
()
(* Propagation (boolean and theory) *)
let new_atom f =
let a = atom f in
ignore (th_eval a);
a
let slice_get i =
match Vec.get env.elt_queue i with
| Atom a ->
Plugin_intf.Lit a.lit
| Lit {l_level; term; assigned = Some v} ->
Plugin_intf.Assign (term, v, l_level)
| Lit _ -> assert false
let slice_push (l:formula list) (lemma:proof): unit =
let atoms = List.rev_map (fun x -> new_atom x) l in
let c = make_clause (fresh_tname ()) atoms (Lemma lemma) in
Log.debugf 10 "Pushing clause %a" (fun k->k St.pp_clause c);
(* do not add the clause yet, wait for the theory propagation to
be done *)
Stack.push c env.clauses_to_add
let slice_propagate f lvl =
let a = atom f in
Iheap.grow_to_by_double env.order (St.nb_elt ());
enqueue_bool a lvl (Semantic lvl)
let current_slice (): (_,_,_) Plugin_intf.slice = {
Plugin_intf.start = env.th_head;
length = (Vec.size env.elt_queue) - env.th_head;
get = slice_get;
push = slice_push;
propagate = slice_propagate;
}
(* full slice, for [if_sat] final check *)
let full_slice () : (_,_,_) Plugin_intf.slice = {
Plugin_intf.start = 0;
length = Vec.size env.elt_queue;
get = slice_get;
push = slice_push;
propagate = (fun _ -> assert false);
}
(* some boolean literals were decided/propagated within Msat. Now we
need to inform the theory of those assumptions, so it can do its job.
@return the conflict clause, if the theory detects unsatisfiability *)
let rec theory_propagate (): clause option =
assert (env.elt_head = Vec.size env.elt_queue);
assert (env.th_head <= env.elt_head);
if env.th_head = env.elt_head then
None (* fixpoint/no propagation *)
else begin
let slice = current_slice () in
env.th_head <- env.elt_head; (* catch up *)
match Plugin.assume slice with
| Plugin_intf.Sat ->
propagate ()
| Plugin_intf.Unsat (l, p) ->
(* conflict *)
let l = List.rev_map new_atom l in
Iheap.grow_to_by_double env.order (St.nb_elt ());
List.iter (fun a -> insert_var_order (elt_of_var a.var)) l;
let c = St.make_clause (St.fresh_tname ()) l (Lemma p) in
Some c
end
(* fixpoint between boolean propagation and theory propagation
@return a conflict clause, if any *)
and propagate (): clause option =
(* First, treat the stack of lemmas added by the theory, if any *)
flush_clauses ();
(* Now, check that the situation is sane *)
assert (env.elt_head <= Vec.size env.elt_queue);
if env.elt_head = Vec.size env.elt_queue then
theory_propagate ()
else begin
let num_props = ref 0 in
let res = ref None in
while env.elt_head < Vec.size env.elt_queue do
begin match Vec.get env.elt_queue env.elt_head with
| Lit _ -> ()
| Atom a ->
incr num_props;
propagate_atom a res
end;
env.elt_head <- env.elt_head + 1;
done;
env.propagations <- env.propagations + !num_props;
env.simpDB_props <- env.simpDB_props - !num_props;
match !res with
| None -> theory_propagate ()
| _ -> !res
end
(* remove some learnt clauses
NOTE: so far we do not forget learnt clauses. We could, as long as
lemmas from the theory itself are kept. *)
let reduce_db () = ()
(* Decide on a new literal, and enqueue it into the trail *)
let rec pick_branch_aux atom: unit =
let v = atom.var in
if v.v_level >= 0 then begin
assert (v.pa.is_true || v.na.is_true);
pick_branch_lit ()
end else match Plugin.eval atom.lit with
| Plugin_intf.Unknown ->
env.decisions <- env.decisions + 1;
new_decision_level();
let current_level = decision_level () in
enqueue_bool atom current_level Decision
| Plugin_intf.Valued (b, lvl) ->
let a = if b then atom else atom.neg in
enqueue_bool a lvl (Semantic lvl)
and pick_branch_lit () =
match env.next_decision with
| Some atom ->
env.next_decision <- None;
pick_branch_aux atom
| None ->
begin try
begin match St.get_elt (Iheap.remove_min f_weight env.order) with
| E_lit l ->
if l.l_level >= 0 then
pick_branch_lit ()
else begin
let value = Plugin.assign l.term in
env.decisions <- env.decisions + 1;
new_decision_level();
let current_level = decision_level () in
enqueue_assign l value current_level
end
| E_var v ->
pick_branch_aux v.pa
end
with Not_found -> raise Sat
end
(* do some amount of search, until the number of conflicts or clause learnt
reaches the given parameters *)
let search n_of_conflicts n_of_learnts: unit =
let conflictC = ref 0 in
env.starts <- env.starts + 1;
while true do
match propagate () with
| Some confl -> (* Conflict *)
incr conflictC;
add_boolean_conflict confl
| None -> (* No Conflict *)
assert (env.elt_head = Vec.size env.elt_queue);
assert (env.elt_head = env.th_head);
if Vec.size env.elt_queue = St.nb_elt ()
then raise Sat;
if n_of_conflicts > 0 && !conflictC >= n_of_conflicts then begin
cancel_until env.base_level;
raise Restart
end;
(* if decision_level() = 0 then simplify (); *)
if n_of_learnts >= 0 &&
Vec.size env.clauses_learnt - Vec.size env.elt_queue >= n_of_learnts
then reduce_db();
pick_branch_lit ()
done
(* check that clause is true *)
let check_clause (c:clause): unit =
let ok = Array_util.exists (fun a -> a.is_true) c.atoms in
assert ok
let check_vec vec = Vec.iter check_clause vec
let eval_level lit =
let var, negated = make_boolean_var lit in
if not var.pa.is_true && not var.na.is_true
then raise UndecidedLit
else assert (var.v_level >= 0);
let truth = var.pa.is_true in
let value = match negated with
| Formula_intf.Negated -> not truth
| Formula_intf.Same_sign -> truth
in
value, var.v_level
let eval lit = fst (eval_level lit)
let unsat_conflict () = env.unsat_conflict
let model () : (term * term) list =
let opt = function Some a -> a | None -> assert false in
Vec.fold
(fun acc e -> match e with
| Lit v -> (v.term, opt v.assigned) :: acc
| Atom _ -> acc)
[] env.elt_queue
(* fixpoint of propagation and decisions until a model is found, or a
conflict is reached *)
let solve (): unit =
Log.debug 5 "solve";
if is_unsat () then raise Unsat;
let n_of_conflicts = ref (to_float env.restart_first) in
let n_of_learnts = ref ((to_float (nb_clauses())) *. env.learntsize_factor) in
try
while true do
begin try
search (to_int !n_of_conflicts) (to_int !n_of_learnts)
with
| Restart ->
n_of_conflicts := !n_of_conflicts *. env.restart_inc;
n_of_learnts := !n_of_learnts *. env.learntsize_inc
| Sat ->
assert (env.elt_head = Vec.size env.elt_queue);
Plugin.if_sat (full_slice ());
flush_clauses();
if is_unsat () then raise Unsat
else if env.elt_head = Vec.size env.elt_queue (* sanity check *)
&& env.elt_head = St.nb_elt ()
(* this is the important test to know if the search is finished *)
then raise Sat
end
done
with Sat -> ()
let assume ?tag cnf =
List.iter
(fun l ->
let atoms = List.rev_map atom l in
let c = make_clause ?tag (fresh_hname ()) atoms Hyp in
Stack.push c env.clauses_to_add)
cnf
(* create a factice decision level for local assumptions *)
let push (): unit =
cancel_until env.base_level;
begin match propagate () with
| Some confl -> report_unsat confl
| None ->
new_decision_level ();
env.base_level <- env.base_level + 1;
assert (decision_level () = env.base_level)
end
(* pop the last factice decision level *)
let pop (): unit =
if env.base_level = 0 then ()
else begin
assert (env.base_level > 0);
env.unsat_conflict <- None;
env.base_level <- env.base_level - 1; (* before the [cancel_until]! *)
cancel_until env.base_level
end
(* Add local hyps to the current decision level *)
let local l =
let aux lit =
let a = atom lit in
Log.debugf 10 "local assumption: @[%a@]" (fun k->k pp_atom a);
assert (decision_level () = env.base_level);
if a.is_true then ()
else if a.neg.is_true then begin
(* conflict between assumptions: UNSAT *)
let c = make_clause (fresh_hname ()) [a] Hyp in
report_unsat c;
end else begin
(* make a decision, propagate *)
let level = decision_level() in
let c = make_clause (fresh_hname ()) [a] Hyp in
enqueue_bool a ~level (Bcp c);
end
in
assert (env.base_level > 0);
match env.unsat_conflict with
| None ->
cancel_until env.base_level;
List.iter aux l
| Some _ -> ()
let hyps () = env.clauses_hyps
let history () = env.clauses_learnt
end