sidekick/common/bitv.mli
2014-03-06 10:45:04 +01:00

228 lines
8.6 KiB
OCaml

(**************************************************************************)
(* *)
(* Copyright (C) Jean-Christophe Filliatre *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(*i $Id: bitv.mli,v 1.19 2012/08/14 07:26:00 filliatr Exp $ i*)
(*s {\bf Module Bitv}.
This module implements bit vectors, as an abstract datatype [t].
Since bit vectors are particular cases of arrays, this module provides
the same operations as module [Array] (Sections~\ref{barray}
up to \ref{earray}). It also provides bitwise operations
(Section~\ref{bitwise}) and conversions to/from integer types.
In the following, [false] stands for bit 0 and [true] for bit 1. *)
type t
(*s {\bf Creation, access and assignment.} \label{barray}
[(Bitv.create n b)] creates a new bit vector of length [n],
initialized with [b].
[(Bitv.init n f)] returns a fresh vector of length [n],
with bit number [i] initialized to the result of [(f i)].
[(Bitv.set v n b)] sets the [n]th bit of [v] to the value [b].
[(Bitv.get v n)] returns the [n]th bit of [v].
[Bitv.length] returns the length (number of elements) of the given
vector. *)
val create : int -> bool -> t
val init : int -> (int -> bool) -> t
val set : t -> int -> bool -> unit
val get : t -> int -> bool
val length : t -> int
(*s [max_length] is the maximum length of a bit vector (System dependent). *)
val max_length : int
(*s {\bf Copies and concatenations.}
[(Bitv.copy v)] returns a copy of [v],
that is, a fresh vector containing the same elements as
[v]. [(Bitv.append v1 v2)] returns a fresh vector containing the
concatenation of the vectors [v1] and [v2]. [Bitv.concat] is
similar to [Bitv.append], but catenates a list of vectors. *)
val copy : t -> t
val append : t -> t -> t
val concat : t list -> t
(*s {\bf Sub-vectors and filling.}
[(Bitv.sub v start len)] returns a fresh
vector of length [len], containing the bits number [start] to
[start + len - 1] of vector [v]. Raise [Invalid_argument
"Bitv.sub"] if [start] and [len] do not designate a valid
subvector of [v]; that is, if [start < 0], or [len < 0], or [start
+ len > Bitv.length a].
[(Bitv.fill v ofs len b)] modifies the vector [v] in place,
storing [b] in elements number [ofs] to [ofs + len - 1]. Raise
[Invalid_argument "Bitv.fill"] if [ofs] and [len] do not designate
a valid subvector of [v].
[(Bitv.blit v1 o1 v2 o2 len)] copies [len] elements from vector
[v1], starting at element number [o1], to vector [v2], starting at
element number [o2]. It {\em does not work} correctly if [v1] and [v2] are
the same vector with the source and destination chunks overlapping.
Raise [Invalid_argument "Bitv.blit"] if [o1] and [len] do not
designate a valid subvector of [v1], or if [o2] and [len] do not
designate a valid subvector of [v2]. *)
val sub : t -> int -> int -> t
val fill : t -> int -> int -> bool -> unit
val blit : t -> int -> t -> int -> int -> unit
(*s {\bf Iterators.} \label{earray}
[(Bitv.iter f v)] applies function [f] in turn to all
the elements of [v]. Given a function [f], [(Bitv.map f v)] applies
[f] to all
the elements of [v], and builds a vector with the results returned
by [f]. [Bitv.iteri] and [Bitv.mapi] are similar to [Bitv.iter]
and [Bitv.map] respectively, but the function is applied to the
index of the element as first argument, and the element itself as
second argument.
[(Bitv.fold_left f x v)] computes [f (... (f (f x (get v 0)) (get
v 1)) ...) (get v (n-1))], where [n] is the length of the vector
[v].
[(Bitv.fold_right f a x)] computes [f (get v 0) (f (get v 1)
( ... (f (get v (n-1)) x) ...))], where [n] is the length of the
vector [v]. *)
val iter : (bool -> unit) -> t -> unit
val map : (bool -> bool) -> t -> t
val iteri : (int -> bool -> unit) -> t -> unit
val mapi : (int -> bool -> bool) -> t -> t
val fold_left : ('a -> bool -> 'a) -> 'a -> t -> 'a
val fold_right : (bool -> 'a -> 'a) -> t -> 'a -> 'a
val foldi_left : ('a -> int -> bool -> 'a) -> 'a -> t -> 'a
val foldi_right : (int -> bool -> 'a -> 'a) -> t -> 'a -> 'a
(*s [iteri_true f v] applies function [f] in turn to all indexes of
the elements of [v] which are set (i.e. [true]); indexes are
visited from least significant to most significant. *)
val iteri_true : (int -> unit) -> t -> unit
(*s [gray_iter f n] iterates function [f] on all bit vectors
of length [n], once each, using a Gray code. The order in which
bit vectors are processed is unspecified. *)
val gray_iter : (t -> unit) -> int -> unit
(*s {\bf Bitwise operations.} \label{bitwise} [bwand], [bwor] and
[bwxor] implement logical and, or and exclusive or. They return
fresh vectors and raise [Invalid_argument "Bitv.xxx"] if the two
vectors do not have the same length (where \texttt{xxx} is the
name of the function). [bwnot] implements the logical negation.
It returns a fresh vector.
[shiftl] and [shiftr] implement shifts. They return fresh vectors.
[shiftl] moves bits from least to most significant, and [shiftr]
from most to least significant (think [lsl] and [lsr]).
[all_zeros] and [all_ones] respectively test for a vector only
containing zeros and only containing ones. *)
val bw_and : t -> t -> t
val bw_or : t -> t -> t
val bw_xor : t -> t -> t
val bw_not : t -> t
val bw_and_in_place : t -> t -> unit
val bw_or_in_place : t -> t -> unit
val bw_not_in_place : t -> unit
val shiftl : t -> int -> t
val shiftr : t -> int -> t
val all_zeros : t -> bool
val all_ones : t -> bool
(*s {\bf Conversions to and from strings.} *)
(* With least significant bits first. *)
module L : sig
val to_string : t -> string
val of_string : string -> t
val print : Format.formatter -> t -> unit
end
(* With most significant bits first. *)
module M : sig
val to_string : t -> string
val of_string : string -> t
val print : Format.formatter -> t -> unit
end
(*s {\bf Input/output in a machine-independent format.}
The following functions export/import a bit vector to/from a channel,
in a way that is compact, independent of the machine architecture, and
independent of the OCaml version.
For a bit vector of length [n], the number of bytes of this external
representation is 4+ceil(n/8) on a 32-bit machine and 8+ceil(n/8) on
a 64-bit machine. *)
val output_bin: out_channel -> t -> unit
val input_bin: in_channel -> t
(*s {\bf Conversions to and from lists of integers.}
The list gives the indices of bits which are set (ie [true]). *)
val to_list : t -> int list
val of_list : int list -> t
val of_list_with_length : int list -> int -> t
(*s Interpretation of bit vectors as integers. Least significant bit
comes first (ie is at index 0 in the bit vector).
[to_xxx] functions truncate when the bit vector is too wide,
and raise [Invalid_argument] when it is too short.
Suffix [_s] means that sign bit is kept,
and [_us] that it is discarded. *)
(* type [int] (length 31/63 with sign, 30/62 without) *)
val of_int_s : int -> t
val to_int_s : t -> int
val of_int_us : int -> t
val to_int_us : t -> int
(* type [Int32.t] (length 32 with sign, 31 without) *)
val of_int32_s : Int32.t -> t
val to_int32_s : t -> Int32.t
val of_int32_us : Int32.t -> t
val to_int32_us : t -> Int32.t
(* type [Int64.t] (length 64 with sign, 63 without) *)
val of_int64_s : Int64.t -> t
val to_int64_s : t -> Int64.t
val of_int64_us : Int64.t -> t
val to_int64_us : t -> Int64.t
(* type [Nativeint.t] (length 32/64 with sign, 31/63 without) *)
val of_nativeint_s : Nativeint.t -> t
val to_nativeint_s : t -> Nativeint.t
val of_nativeint_us : Nativeint.t -> t
val to_nativeint_us : t -> Nativeint.t
(*s Only if you know what you are doing... *)
val unsafe_set : t -> int -> bool -> unit
val unsafe_get : t -> int -> bool