sidekick/src/core/internal.ml
Guillaume Bury 8076c06047 [bugfix] Eliminate duplicates in input clauses
When adding clauses that conatins duplicates, the checking
of some proof would fail because there would sometime be multiple
littrals to resolve over. This fixes that problem.
2017-02-15 13:04:54 +01:00

1297 lines
46 KiB
OCaml

(*
MSAT is free software, using the Apache license, see file LICENSE
Copyright 2014 Guillaume Bury
Copyright 2014 Simon Cruanes
*)
module Make
(St : Solver_types.S)
(Plugin : Plugin_intf.S with type term = St.term
and type formula = St.formula
and type proof = St.proof)
(Dummy: sig end)
= struct
module Proof = Res.Make(St)
open St
exception Sat
exception Unsat
exception UndecidedLit
exception Restart
exception Conflict of clause
(* Log levels *)
let error = 1
let warn = 3
let info = 5
let debug = 50
(* Singleton type containing the current state *)
type env = {
(* Clauses are simplified for eficiency purposes. In the following
vectors, the comments actually refer to the original non-simplified
clause. *)
clauses_hyps : clause Vec.t;
(* clauses added by the user *)
clauses_learnt : clause Vec.t;
(* learnt clauses (tautologies true at any time, whatever the user level) *)
clauses_temp : clause Vec.t;
(* Temp clauses, corresponding to the local assumptions. This vec is used
only to have an efficient way to access the list of local assumptions. *)
clauses_root : clause Stack.t;
(* Clauses that should propagate at level 0, but couldn't *)
clauses_to_add : clause Stack.t;
(* Clauses either assumed or pushed by the theory, waiting to be added. *)
mutable unsat_conflict : clause option;
(* conflict clause at [base_level], if any *)
mutable next_decision : atom option;
(* When the last conflict was a semantic one, this stores the next decision to make *)
elt_queue : t Vec.t;
(* decision stack + propagated elements (atoms or assignments).
Also called "trail" in some solvers. *)
elt_levels : int Vec.t;
(* decision levels in [trail] *)
th_levels : Plugin.level Vec.t;
(* theory states corresponding to elt_levels *)
user_levels : int Vec.t;
(* user levels in [clauses_temp] *)
mutable th_head : int;
(* Start offset in the queue {!elt_queue} of
unit facts not yet seen by the theory. *)
mutable elt_head : int;
(* Start offset in the queue {!elt_queue} of
unit facts to propagate, within the trail *)
(* invariant:
- during propagation, th_head <= elt_head
- then, once elt_head reaches length elt_queue, Th.assume is
called so that th_head can catch up with elt_head
- this is repeated until a fixpoint is reached;
- before a decision (and after the fixpoint),
th_head = elt_head = length elt_queue
*)
mutable simpDB_props : int;
(* remaining number of propagations before the next call to [simplify ()] *)
mutable simpDB_assigns : int;
(* number of toplevel assignments since last call to [simplify ()] *)
order : Iheap.t;
(* Heap ordered by variable activity *)
var_decay : float;
(* inverse of the activity factor for variables. Default 1/0.999 *)
clause_decay : float;
(* inverse of the activity factor for clauses. Default 1/0.95 *)
mutable var_incr : float;
(* increment for variables' activity *)
mutable clause_incr : float;
(* increment for clauses' activity *)
remove_satisfied : bool;
(* Wether to remove satisfied learnt clauses when simplifying *)
restart_inc : float;
(* multiplicative factor for restart limit, default 1.5 *)
mutable restart_first : int;
(* intial restart limit, default 100 *)
learntsize_inc : float;
(* multiplicative factor for [learntsize_factor] at each restart, default 1.1 *)
mutable learntsize_factor : float;
(* initial limit for the number of learnt clauses, 1/3 of initial
number of clauses by default *)
mutable starts : int;
mutable decisions : int;
mutable propagations : int;
mutable conflicts : int;
mutable clauses_literals : int;
mutable learnts_literals : int;
mutable nb_init_clauses : int;
}
(* Starting environment. *)
let env = {
unsat_conflict = None;
next_decision = None;
clauses_hyps = Vec.make 0 dummy_clause;
clauses_learnt = Vec.make 0 dummy_clause;
clauses_temp = Vec.make 0 dummy_clause;
clauses_root = Stack.create ();
clauses_to_add = Stack.create ();
th_head = 0;
elt_head = 0;
elt_queue = Vec.make 601 (of_atom dummy_atom);
elt_levels = Vec.make 601 (-1);
th_levels = Vec.make 100 Plugin.dummy;
user_levels = Vec.make 10 (-1);
order = Iheap.init 0;
var_incr = 1.;
clause_incr = 1.;
var_decay = 1. /. 0.95;
clause_decay = 1. /. 0.999;
simpDB_assigns = -1;
simpDB_props = 0;
remove_satisfied = false;
restart_inc = 1.5;
restart_first = 100;
learntsize_factor = 1. /. 3. ;
learntsize_inc = 1.1;
starts = 0;
decisions = 0;
propagations = 0;
conflicts = 0;
clauses_literals = 0;
learnts_literals = 0;
nb_init_clauses = 0;
}
(* Misc functions *)
let to_float i = float_of_int i
let to_int f = int_of_float f
let nb_clauses () = Vec.size env.clauses_hyps
let nb_vars () = St.nb_elt ()
let decision_level () = Vec.size env.elt_levels
let base_level () = Vec.size env.user_levels
let f_weight i j =
get_elt_weight (St.get_elt j) < get_elt_weight (St.get_elt i)
(* Are the assumptions currently unsat ? *)
let is_unsat () =
match env.unsat_conflict with
| Some _ -> true
| None -> false
(* Iteration over subterms.
When incrementing activity, we want to be able to iterate over
all subterms of a formula. However, the function provided by the theory
may be costly (if it walks a tree-like structure, and does some processing
to ignore some subterms for instance), so we want to 'cache' the list
of subterms of each formula, so we have a field [v_assignable]
directly in variables to do so. *)
let iter_sub f v =
if St.mcsat then
match v.v_assignable with
| Some l -> List.iter f l
| None -> assert false
(* When we have a new literal,
we need to first create the list of its subterms. *)
let atom (f:St.formula) : atom =
let res = add_atom f in
if St.mcsat then
begin match res.var.v_assignable with
| Some _ -> ()
| None ->
let l = ref [] in
Plugin.iter_assignable (fun t -> l := add_term t :: !l) res.var.pa.lit;
res.var.v_assignable <- Some !l;
end;
res
(* Variable and literal activity.
Activity is used to decide on which variable to decide when propagation
is done. Uses a heap (implemented in Iheap), to keep track of variable activity.
To be more general, the heap only stores the variable/literal id (i.e an int).
When we add a variable (which wraps a formula), we also need to add all
its subterms.
*)
let rec insert_var_order = function
| E_lit l ->
Iheap.insert f_weight env.order l.lid
| E_var v ->
Iheap.insert f_weight env.order v.vid;
insert_subterms_order v
and insert_subterms_order v =
iter_sub (fun t -> insert_var_order (elt_of_lit t)) v
(* Add new litterals/atoms on which to decide on, even if there is no
clause that constrains it.
We could maybe check if they have already has been decided before
inserting them into the heap, if it appears that it helps performance. *)
let new_lit t =
let l = add_term t in
insert_var_order (E_lit l)
let new_atom p =
let a = atom p in
(* This is necessary to ensure that the var will not be dropped
during the next backtrack. *)
a.var.used <- a.var.used + 1;
insert_var_order (E_var a.var)
(* Rather than iterate over all the heap when we want to decrease all the
variables/literals activity, we instead increase the value by which
we increase the activity of 'interesting' var/lits. *)
let var_decay_activity () =
env.var_incr <- env.var_incr *. env.var_decay
let clause_decay_activity () =
env.clause_incr <- env.clause_incr *. env.clause_decay
(* increase activity of [v] *)
let var_bump_activity_aux v =
v.v_weight <- v.v_weight +. env.var_incr;
if v.v_weight > 1e100 then begin
for i = 0 to (St.nb_elt ()) - 1 do
set_elt_weight (St.get_elt i) ((get_elt_weight (St.get_elt i)) *. 1e-100)
done;
env.var_incr <- env.var_incr *. 1e-100;
end;
if Iheap.in_heap env.order v.vid then
Iheap.decrease f_weight env.order v.vid
(* increase activity of literal [l] *)
let lit_bump_activity_aux (l:lit): unit =
l.l_weight <- l.l_weight +. env.var_incr;
if l.l_weight > 1e100 then begin
for i = 0 to (St.nb_elt ()) - 1 do
set_elt_weight (St.get_elt i) ((get_elt_weight (St.get_elt i)) *. 1e-100)
done;
env.var_incr <- env.var_incr *. 1e-100;
end;
if Iheap.in_heap env.order l.lid then
Iheap.decrease f_weight env.order l.lid
(* increase activity of var [v] *)
let var_bump_activity (v:var): unit =
var_bump_activity_aux v;
iter_sub lit_bump_activity_aux v
(* increase activity of clause [c] *)
let clause_bump_activity (c:clause) : unit =
c.activity <- c.activity +. env.clause_incr;
if c.activity > 1e20 then begin
for i = 0 to (Vec.size env.clauses_learnt) - 1 do
(Vec.get env.clauses_learnt i).activity <-
(Vec.get env.clauses_learnt i).activity *. 1e-20;
done;
env.clause_incr <- env.clause_incr *. 1e-20
end
(* Simplification of clauses.
When adding new clauses, it is desirable to 'simplify' them, i.e
minimize the amount of literals in it, because it greatly reduces
the search space for new watched literals during propagation.
Additionally, we have to partition the lits, to ensure the watched
literals (which are the first two lits of the clause) are appropriate.
Indeed, it is better to watch true literals, and then unassigned literals.
Watching false literals should be a last resort, and come with constraints
(see add_clause).
*)
exception Trivial
(* [arr_to_list a i] converts [a.(i), ... a.(length a-1)] into a list *)
let arr_to_list arr i : _ list =
if i >= Array.length arr then []
else Array.to_list (Array.sub arr i (Array.length arr - i))
(* Eliminates atom doublons in clauses *)
let eliminate_doublons clause : clause =
let duplicates = ref [] in
let res = ref [] in
Array.iter (fun a ->
if a.var.seen then duplicates := a :: !duplicates
else (a.var.seen <- true; res := a :: !res)
) clause.atoms;
List.iter (fun a -> a.var.seen <- false) !res;
if !duplicates = [] then
clause
else
make_clause (fresh_lname ()) !res (History [clause])
(* Partition literals for new clauses, into:
- true literals (maybe makes the clause trivial if the lit is proved true at level 0)
- unassigned literals, yet to be decided
- false literals (not suitable to watch, those at level 0 can be removed from the clause)
Clauses that propagated false lits are remembered to reconstruct resolution proofs.
*)
let partition atoms : atom list * clause list =
let rec partition_aux trues unassigned falses history i =
if i >= Array.length atoms then
trues @ unassigned @ falses, history
else begin
let a = atoms.(i) in
if a.is_true then
let l = a.var.v_level in
if l = 0 then
raise Trivial (* A var true at level 0 gives a trivially true clause *)
else
(a :: trues) @ unassigned @ falses @
(arr_to_list atoms (i + 1)), history
else if a.neg.is_true then
let l = a.var.v_level in
if l = 0 then begin
match a.var.reason with
| Some (Bcp cl) ->
partition_aux trues unassigned falses (cl :: history) (i + 1)
(* A var false at level 0 can be eliminated from the clause,
but we need to kepp in mind that we used another clause to simplify it. *)
| Some Semantic ->
partition_aux trues unassigned falses history (i + 1)
(* Semantic propagations at level 0 are, well not easy to deal with,
this shouldn't really happen actually (because semantic propagations
at level 0 should come with a proof). *)
(* TODO: get a proof of the propagation. *)
| None | Some Decision -> assert false
(* The var must have a reason, and it cannot be a decision/assumption,
since its level is 0. *)
end else
partition_aux trues unassigned (a::falses) history (i + 1)
else
partition_aux trues (a::unassigned) falses history (i + 1)
end
in
partition_aux [] [] [] [] 0
(* Making a decision.
Before actually creatig a new decision level, we check that
all propagations have been done and propagated to the theory,
i.e that the theoriy state indeed takes into account the whole
stack of literals
i.e we have indeed reached a propagation fixpoint before making
a new decision *)
let new_decision_level() =
assert (env.th_head = Vec.size env.elt_queue);
assert (env.elt_head = Vec.size env.elt_queue);
Vec.push env.elt_levels (Vec.size env.elt_queue);
Vec.push env.th_levels (Plugin.current_level ()); (* save the current theory state *)
()
(* Attach/Detach a clause.
A clause is attached (to its watching lits) when it is first added,
either because it is assumed or learnt.
*)
let attach_clause c =
assert (not c.attached);
Log.debugf debug "Attaching %a" (fun k -> k St.pp_clause c);
Array.iter (fun a -> a.var.used <- a.var.used + 1) c.atoms;
Vec.push c.atoms.(0).neg.watched c;
Vec.push c.atoms.(1).neg.watched c;
c.attached <- true;
()
(* Is a clause satisfied ? *)
let satisfied c = Array_util.exists (fun atom -> atom.is_true) c.atoms
(* Backtracking.
Used to backtrack, i.e cancel down to [lvl] excluded,
i.e we want to go back to the state the solver was in
when decision level [lvl] was created. *)
let cancel_until lvl =
assert (lvl >= base_level ());
(* Nothing to do if we try to backtrack to a non-existent level. *)
if decision_level () <= lvl then
Log.debugf debug "Already at level <= %d" (fun k -> k lvl)
else begin
Log.debugf info "Backtracking to lvl %d" (fun k -> k lvl);
(* We set the head of the solver and theory queue to what it was. *)
let head = ref (Vec.get env.elt_levels lvl) in
env.elt_head <- !head;
env.th_head <- !head;
(* Now we need to cleanup the vars that are not valid anymore
(i.e to the right of elt_head in the queue. *)
for c = env.elt_head to Vec.size env.elt_queue - 1 do
match (Vec.get env.elt_queue c) with
(* A literal is unassigned, we nedd to add it back to
the heap of potentially assignable literals, unless it has
a level lower than [lvl], in which case we just move it back. *)
| Lit l ->
if l.l_level <= lvl then begin
Vec.set env.elt_queue !head (of_lit l);
head := !head + 1
end else begin
l.assigned <- None;
l.l_level <- -1;
insert_var_order (elt_of_lit l)
end
(* A variable is not true/false anymore, one of two things can happen: *)
| Atom a ->
if a.var.v_level <= lvl then begin
(* It is a late propagation, which has a level
lower than where we backtrack, so we just move it to the head
of the queue, to be propagated again. *)
Vec.set env.elt_queue !head (of_atom a);
head := !head + 1
end else begin
(* it is a result of bolean propagation, or a semantic propagation
with a level higher than the level to which we backtrack,
in that case, we simply unset its value and reinsert it into the heap. *)
a.is_true <- false;
a.neg.is_true <- false;
a.var.v_level <- -1;
a.var.reason <- None;
insert_var_order (elt_of_var a.var)
end
done;
(* Recover the right theory state. *)
Plugin.backtrack (Vec.get env.th_levels lvl);
(* Resize the vectors according to their new size. *)
Vec.shrink env.elt_queue ((Vec.size env.elt_queue) - !head);
Vec.shrink env.elt_levels ((Vec.size env.elt_levels) - lvl);
Vec.shrink env.th_levels ((Vec.size env.th_levels) - lvl);
end;
assert (Vec.size env.elt_levels = Vec.size env.th_levels);
()
(* Unsatisfiability is signaled through an exception, since it can happen
in multiple places (adding new clauses, or solving for instance). *)
let report_unsat ({atoms=atoms} as confl) : _ =
Log.debugf info "@[Unsat conflict: %a@]" (fun k -> k St.pp_clause confl);
env.unsat_conflict <- Some confl;
raise Unsat
(* Simplification of boolean propagation reasons.
When doing boolean propagation *at level 0*, it can happen
that the clause cl, which propagates a formula, also contains
other formulas, but has been simplified. in which case, we
need to rebuild a clause with correct history, in order to
be able to build a correct proof at the end of proof search. *)
let simpl_reason : reason -> reason = function
| (Bcp cl) as r ->
let l, history = partition cl.atoms in
begin match l with
| [ a ] ->
if history = [] then r
(* no simplification has been done, so [cl] is actually a clause with only
[a], so it is a valid reason for propagating [a]. *)
else begin
(* Clauses in [history] have been used to simplify [cl] into a clause [tmp_cl]
with only one formula (which is [a]). So we explicitly create that clause
and set it as the cause for the propagation of [a], that way we can
rebuild the whole resolution tree when we want to prove [a]. *)
let c' = make_clause (fresh_lname ()) l (History (cl :: history)) in
Log.debugf debug "Simplified reason: @[<v>%a@,%a@]"
(fun k -> k St.pp_clause cl St.pp_clause c');
Bcp c'
end
| _ ->
Log.debugf error "@[<v 2>Failed at reason simplification:@,%a@,%a@]"
(fun k ->
k (Vec.print ~sep:"" St.pp_atom)
(Vec.from_list l (List.length l) St.dummy_atom)
St.pp_clause cl);
assert false
end
| r -> r
(* Boolean propagation.
Wrapper function for adding a new propagated formula. *)
let enqueue_bool a ~level:lvl reason : unit =
if a.neg.is_true then begin
Log.debugf error "Trying to enqueue a false literal: %a" (fun k->k St.pp_atom a);
assert false
end;
assert (not a.is_true && a.var.v_level < 0 &&
a.var.reason = None && lvl >= 0);
let reason =
if lvl > 0 then reason
else simpl_reason reason
in
a.is_true <- true;
a.var.v_level <- lvl;
a.var.reason <- Some reason;
Vec.push env.elt_queue (of_atom a);
Log.debugf debug "Enqueue (%d): %a"
(fun k->k (Vec.size env.elt_queue) pp_atom a)
let enqueue_semantic a terms =
if a.is_true then ()
else begin
let l = List.map St.add_term terms in
let lvl = List.fold_left (fun acc {l_level; _} ->
assert (l_level > 0); max acc l_level) 0 l in
Iheap.grow_to_at_least env.order (St.nb_elt ());
enqueue_bool a lvl Semantic
end
(* MCsat semantic assignment *)
let enqueue_assign l value lvl =
match l.assigned with
| Some _ ->
Log.debugf error "Trying to assign an already assigned literal: %a"
(fun k -> k St.pp_lit l);
assert false
| None ->
assert (l.l_level < 0);
l.assigned <- Some value;
l.l_level <- lvl;
Vec.push env.elt_queue (of_lit l);
Log.debugf debug "Enqueue (%d): %a"
(fun k -> k (Vec.size env.elt_queue) pp_lit l)
(* evaluate an atom for MCsat, if it's not assigned
by boolean propagation/decision *)
let th_eval a : bool option =
if a.is_true || a.neg.is_true then None
else match Plugin.eval a.lit with
| Plugin_intf.Unknown -> None
| Plugin_intf.Valued (b, l) ->
let atom = if b then a else a.neg in
enqueue_semantic atom l;
Some b
(* conflict analysis: find the list of atoms of [l] that have the
maximal level *)
let max_lvl_atoms (l:atom list) : int * atom list =
List.fold_left
(fun (max_lvl, acc) a ->
if a.var.v_level = max_lvl then (max_lvl, a :: acc)
else if a.var.v_level > max_lvl then (a.var.v_level, [a])
else (max_lvl, acc))
(0, []) l
(* find which level to backtrack to, given a conflict clause
and a boolean stating whether it is
a UIP ("Unique Implication Point")
precond: the atom list is sorted by decreasing decision level *)
let backtrack_lvl : atom list -> int * bool = function
| [] | [_] ->
0, true
| a :: b :: r ->
assert(a.var.v_level > base_level ());
if a.var.v_level > b.var.v_level then begin
(* backtrack below [a], so we can propagate [not a] *)
b.var.v_level, true
end else begin
assert (a.var.v_level = b.var.v_level);
assert (a.var.v_level >= base_level ());
max (a.var.v_level - 1) (base_level ()), false
end
(* result of conflict analysis, containing the learnt clause and some
additional info.
invariant: cr_history's order matters, as its head is later used
during pop operations to determine the origin of a clause/conflict
(boolean conflict i.e hypothesis, or theory lemma) *)
type conflict_res = {
cr_backtrack_lvl : int; (* level to backtrack to *)
cr_learnt: atom list; (* lemma learnt from conflict *)
cr_history: clause list; (* justification *)
cr_is_uip: bool; (* conflict is UIP? *)
}
let get_atom i =
match Vec.get env.elt_queue i with
| Lit _ -> assert false | Atom x -> x
(* conflict analysis for SAT
Same idea as the mcsat analyze function (without semantic propagations),
except we look the the Last UIP (TODO: check ?), and do it in an imperative
and efficient manner. *)
let analyze_sat c_clause : conflict_res =
let pathC = ref 0 in
let learnt = ref [] in
let cond = ref true in
let blevel = ref 0 in
let seen = ref [] in
let c = ref c_clause in
let tr_ind = ref (Vec.size env.elt_queue - 1) in
let history = ref [] in
assert (decision_level () > 0);
let conflict_level =
Array.fold_left (fun acc p -> max acc p.var.v_level) 0 c_clause.atoms
in
while !cond do
begin match !c.cpremise with
| History _ -> clause_bump_activity !c
| Hyp | Local | Lemma _ -> ()
end;
history := !c :: !history;
(* visit the current predecessors *)
for j = 0 to Array.length !c.atoms - 1 do
let q = !c.atoms.(j) in
assert (q.is_true || q.neg.is_true && q.var.v_level >= 0); (* unsure? *)
if q.var.v_level <= 0 then begin
assert (q.neg.is_true);
match q.var.reason with
| Some Bcp cl -> history := cl :: !history
| _ -> assert false
end;
if not q.var.seen then begin
q.var.seen <- true;
seen := q :: !seen;
if q.var.v_level > 0 then begin
var_bump_activity q.var;
if q.var.v_level >= conflict_level then begin
incr pathC;
end else begin
learnt := q :: !learnt;
blevel := max !blevel q.var.v_level
end
end
end
done;
(* look for the next node to expand *)
while
let q = get_atom !tr_ind in
(not q.var.seen) ||
(q.var.v_level < conflict_level)
do
decr tr_ind;
done;
let p = get_atom !tr_ind in
decr pathC;
decr tr_ind;
match !pathC, p.var.reason with
| 0, _ ->
cond := false;
learnt := p.neg :: (List.rev !learnt)
| n, Some Semantic ->
assert (n > 0);
learnt := p.neg :: !learnt
| n, Some Bcp cl ->
assert (n > 0);
assert (p.var.v_level >= conflict_level);
c := cl
| n, _ -> assert false
done;
List.iter (fun q -> q.var.seen <- false) !seen;
let l = List.fast_sort (fun p q -> compare q.var.v_level p.var.v_level) !learnt in
let level, is_uip = backtrack_lvl l in
{ cr_backtrack_lvl = level;
cr_learnt = l;
cr_history = List.rev !history;
cr_is_uip = is_uip;
}
let analyze c_clause : conflict_res =
analyze_sat c_clause
(*
if St.mcsat
then analyze_mcsat c_clause
else analyze_sat c_clause
*)
(* add the learnt clause to the clause database, propagate, etc. *)
let record_learnt_clause (confl:clause) (cr:conflict_res): unit =
begin match cr.cr_learnt with
| [] -> assert false
| [fuip] ->
assert (cr.cr_backtrack_lvl = 0);
if fuip.neg.is_true then
report_unsat confl
else begin
let name = fresh_lname () in
let uclause = make_clause name cr.cr_learnt (History cr.cr_history) in
Vec.push env.clauses_learnt uclause;
(* no need to attach [uclause], it is true at level 0 *)
enqueue_bool fuip ~level:0 (Bcp uclause)
end
| fuip :: _ ->
let name = fresh_lname () in
let lclause = make_clause name cr.cr_learnt (History cr.cr_history) in
Vec.push env.clauses_learnt lclause;
attach_clause lclause;
clause_bump_activity lclause;
if cr.cr_is_uip then
enqueue_bool fuip ~level:cr.cr_backtrack_lvl (Bcp lclause)
else begin
env.next_decision <- Some fuip.neg
end
end;
var_decay_activity ();
clause_decay_activity ()
(* process a conflict:
- learn clause
- backtrack
- report unsat if conflict at level 0
*)
let add_boolean_conflict (confl:clause): unit =
Log.debugf info "Boolean conflict: %a" (fun k -> k St.pp_clause confl);
env.next_decision <- None;
env.conflicts <- env.conflicts + 1;
assert (decision_level() >= base_level ());
if decision_level() = base_level ()
|| Array_util.for_all (fun a -> a.var.v_level <= base_level ()) confl.atoms then
report_unsat confl; (* Top-level conflict *)
let cr = analyze confl in
cancel_until (max cr.cr_backtrack_lvl (base_level ()));
record_learnt_clause confl cr
(* Get the correct vector to insert a clause in. *)
let rec clause_vector c =
match c.cpremise with
| Hyp -> env.clauses_hyps
| Local -> env.clauses_temp
| Lemma _ | History _ -> env.clauses_learnt
(* Add a new clause, simplifying, propagating, and backtracking if
the clause is false in the current trail *)
let add_clause (init:clause) : unit =
Log.debugf debug "Adding clause: @[<hov>%a@]" (fun k -> k St.pp_clause init);
let vec = clause_vector init in
try
let atoms, history = partition init.atoms in
let clause =
if history = []
then (
(* update order of atoms *)
List.iteri (fun i a -> init.atoms.(i) <- a) atoms;
init
)
else make_clause ?tag:init.tag (fresh_name ()) atoms (History (init :: history))
in
Log.debugf info "New clause: @[<hov>%a@]" (fun k->k St.pp_clause clause);
Array.iter (fun x -> insert_var_order (elt_of_var x.var)) clause.atoms;
match atoms with
| [] ->
(* Report_unsat will raise, and the current clause will be lost if we do not
store it somewhere. Since the proof search will end, any of env.clauses_to_add
or env.clauses_root is adequate. *)
Stack.push clause env.clauses_root;
report_unsat clause
| [a] ->
cancel_until (base_level ());
if a.neg.is_true then begin
(* Since we cannot propagate the atom [a], in order to not lose
the information that [a] must be true, we add clause to the list
of clauses to add, so that it will be e-examined later. *)
Log.debugf debug "Unit clause, adding to clauses to add" (fun k -> k);
Stack.push clause env.clauses_to_add;
report_unsat clause
end else if a.is_true then begin
(* If the atom is already true, then it should be because of a local hyp.
However it means we can't propagate it at level 0. In order to not lose
that information, we store the clause in a stack of clauses that we will
add to the solver at the next pop. *)
Log.debugf debug "Unit clause, adding to root clauses" (fun k -> k);
assert (0 < a.var.v_level && a.var.v_level <= base_level ());
Stack.push clause env.clauses_root;
()
end else begin
Log.debugf debug "Unit clause, propagating: %a" (fun k->k St.pp_atom a);
Vec.push vec clause;
enqueue_bool a ~level:0 (Bcp clause)
end
| a::b::_ ->
Vec.push vec clause;
if a.neg.is_true then begin
(* Atoms need to be sorted in decreasing order of decision level,
or we might watch the wrong literals. *)
Array.sort
(fun a b -> compare b.var.v_level a.var.v_level)
clause.atoms;
attach_clause clause;
add_boolean_conflict clause
end else begin
attach_clause clause;
if b.neg.is_true && not a.is_true && not a.neg.is_true then begin
let lvl = List.fold_left (fun m a -> max m a.var.v_level) 0 atoms in
cancel_until (max lvl (base_level ()));
enqueue_bool a lvl (Bcp clause)
end
end
with Trivial ->
Vec.push vec init;
Log.debugf info "Trivial clause ignored : @[%a@]" (fun k->k St.pp_clause init)
let flush_clauses () =
if not (Stack.is_empty env.clauses_to_add) then begin
let nbv = St.nb_elt () in
let nbc = env.nb_init_clauses + Stack.length env.clauses_to_add in
Iheap.grow_to_at_least env.order nbv;
Vec.grow_to_at_least env.clauses_hyps nbc;
Vec.grow_to_at_least env.clauses_learnt nbc;
env.nb_init_clauses <- nbc;
while not (Stack.is_empty env.clauses_to_add) do
let c = Stack.pop env.clauses_to_add in
add_clause c
done
end
type watch_res =
| Watch_kept
| Watch_removed
(* boolean propagation.
[a] is the false atom, one of [c]'s two watch literals
[i] is the index of [c] in [a.watched]
@return whether [c] was removed from [a.watched]
*)
let propagate_in_clause (a:atom) (c:clause) (i:int): watch_res =
let atoms = c.atoms in
let first = atoms.(0) in
if first == a.neg then (
(* false lit must be at index 1 *)
atoms.(0) <- atoms.(1);
atoms.(1) <- first
) else assert (a.neg == atoms.(1));
let first = atoms.(0) in
if first.is_true
then Watch_kept (* true clause, keep it in watched *)
else (
try (* look for another watch lit *)
for k = 2 to Array.length atoms - 1 do
let ak = atoms.(k) in
if not (ak.neg.is_true) then begin
(* watch lit found: update and exit *)
atoms.(1) <- ak;
atoms.(k) <- a.neg;
(* remove [c] from [a.watched], add it to [ak.neg.watched] *)
Vec.push ak.neg.watched c;
assert (Vec.get a.watched i == c);
Vec.fast_remove a.watched i;
raise Exit
end
done;
(* no watch lit found *)
if first.neg.is_true then begin
(* clause is false *)
env.elt_head <- Vec.size env.elt_queue;
raise (Conflict c)
end else begin
match th_eval first with
| None -> (* clause is unit, keep the same watches, but propagate *)
enqueue_bool first (decision_level ()) (Bcp c)
| Some true -> ()
| Some false ->
env.elt_head <- Vec.size env.elt_queue;
raise (Conflict c)
end;
Watch_kept
with Exit ->
Watch_removed
)
(* propagate atom [a], which was just decided. This checks every
clause watching [a] to see if the clause is false, unit, or has
other possible watches
@param res the optional conflict clause that the propagation might trigger *)
let propagate_atom a (res:clause option ref) : unit =
let watched = a.watched in
begin
try
let rec aux i =
if i >= Vec.size watched then ()
else (
let c = Vec.get watched i in
assert c.attached;
let j = match propagate_in_clause a c i with
| Watch_kept -> i+1
| Watch_removed -> i (* clause at this index changed *)
in
aux j
)
in
aux 0
with Conflict c ->
assert (!res = None);
res := Some c
end;
()
(* Propagation (boolean and theory) *)
let create_atom f =
let a = atom f in
ignore (th_eval a);
a
let slice_get i =
match Vec.get env.elt_queue i with
| Atom a ->
Plugin_intf.Lit a.lit
| Lit {term; assigned = Some v} ->
Plugin_intf.Assign (term, v)
| Lit _ -> assert false
let slice_push (l:formula list) (lemma:proof): unit =
let atoms = List.rev_map create_atom l in
let c = make_clause (fresh_tname ()) atoms (Lemma lemma) in
Log.debugf info "Pushing clause %a" (fun k->k St.pp_clause c);
Stack.push (eliminate_doublons c) env.clauses_to_add
let slice_propagate f = function
| Plugin_intf.Eval l ->
let a = atom f in
enqueue_semantic a l
| Plugin_intf.Consequence (causes, proof) ->
let l = List.rev_map atom causes in
if List.for_all (fun a -> a.is_true) l then
let p = atom f in
let c = make_clause (fresh_tname ())
(p :: List.map (fun a -> a.neg) l) (Lemma proof) in
if p.is_true then ()
else if p.neg.is_true then
Stack.push (eliminate_doublons c) env.clauses_to_add
else begin
Iheap.grow_to_at_least env.order (St.nb_elt ());
insert_subterms_order p.var;
enqueue_bool p (decision_level ()) (Bcp c)
end
else
raise (Invalid_argument "Msat.Internal.slice_propagate")
let current_slice (): (_,_,_) Plugin_intf.slice = {
Plugin_intf.start = env.th_head;
length = (Vec.size env.elt_queue) - env.th_head;
get = slice_get;
push = slice_push;
propagate = slice_propagate;
}
(* full slice, for [if_sat] final check *)
let full_slice () : (_,_,_) Plugin_intf.slice = {
Plugin_intf.start = 0;
length = Vec.size env.elt_queue;
get = slice_get;
push = slice_push;
propagate = (fun _ -> assert false);
}
(* some boolean literals were decided/propagated within Msat. Now we
need to inform the theory of those assumptions, so it can do its job.
@return the conflict clause, if the theory detects unsatisfiability *)
let rec theory_propagate (): clause option =
assert (env.elt_head = Vec.size env.elt_queue);
assert (env.th_head <= env.elt_head);
if env.th_head = env.elt_head then
None (* fixpoint/no propagation *)
else begin
let slice = current_slice () in
env.th_head <- env.elt_head; (* catch up *)
match Plugin.assume slice with
| Plugin_intf.Sat ->
propagate ()
| Plugin_intf.Unsat (l, p) ->
(* conflict *)
let l = List.rev_map create_atom l in
Iheap.grow_to_at_least env.order (St.nb_elt ());
List.iter (fun a -> insert_var_order (elt_of_var a.var)) l;
let c = St.make_clause (St.fresh_tname ()) l (Lemma p) in
Some c
end
(* fixpoint between boolean propagation and theory propagation
@return a conflict clause, if any *)
and propagate (): clause option =
(* First, treat the stack of lemmas added by the theory, if any *)
flush_clauses ();
(* Now, check that the situation is sane *)
assert (env.elt_head <= Vec.size env.elt_queue);
if env.elt_head = Vec.size env.elt_queue then
theory_propagate ()
else begin
let num_props = ref 0 in
let res = ref None in
while env.elt_head < Vec.size env.elt_queue do
begin match Vec.get env.elt_queue env.elt_head with
| Lit _ -> ()
| Atom a ->
incr num_props;
propagate_atom a res
end;
env.elt_head <- env.elt_head + 1;
done;
env.propagations <- env.propagations + !num_props;
env.simpDB_props <- env.simpDB_props - !num_props;
match !res with
| None -> theory_propagate ()
| _ -> !res
end
(* remove some learnt clauses
NOTE: so far we do not forget learnt clauses. We could, as long as
lemmas from the theory itself are kept. *)
let reduce_db () = ()
(* Decide on a new literal, and enqueue it into the trail *)
let rec pick_branch_aux atom: unit =
let v = atom.var in
if v.used <= 0 then begin
assert (v.used = 0);
pick_branch_lit ()
end else if v.v_level >= 0 then begin
assert (v.pa.is_true || v.na.is_true);
pick_branch_lit ()
end else match Plugin.eval atom.lit with
| Plugin_intf.Unknown ->
env.decisions <- env.decisions + 1;
new_decision_level();
let current_level = decision_level () in
enqueue_bool atom current_level Decision
| Plugin_intf.Valued (b, l) ->
let a = if b then atom else atom.neg in
enqueue_semantic a l
and pick_branch_lit () =
match env.next_decision with
| Some atom ->
env.next_decision <- None;
pick_branch_aux atom
| None ->
begin try
begin match St.get_elt (Iheap.remove_min f_weight env.order) with
| E_lit l ->
if l.l_level >= 0 then
pick_branch_lit ()
else begin
let value = Plugin.assign l.term in
env.decisions <- env.decisions + 1;
new_decision_level();
let current_level = decision_level () in
enqueue_assign l value current_level
end
| E_var v ->
pick_branch_aux v.pa
end
with Not_found -> raise Sat
end
(* do some amount of search, until the number of conflicts or clause learnt
reaches the given parameters *)
let search n_of_conflicts n_of_learnts: unit =
let conflictC = ref 0 in
env.starts <- env.starts + 1;
while true do
match propagate () with
| Some confl -> (* Conflict *)
incr conflictC;
(* When the theory has raised Unsat, add_boolean_conflict
might 'forget' the initial conflict clause, and only add the
analyzed backtrack clause. So in those case, we use add_clause
to make sure the initial conflict clause is also added. *)
if confl.attached then
add_boolean_conflict confl
else
add_clause confl
| None -> (* No Conflict *)
assert (env.elt_head = Vec.size env.elt_queue);
assert (env.elt_head = env.th_head);
if Vec.size env.elt_queue = St.nb_elt ()
then raise Sat;
if n_of_conflicts > 0 && !conflictC >= n_of_conflicts then begin
Log.debugf info "Restarting..." (fun k -> k);
cancel_until (base_level ());
raise Restart
end;
(* if decision_level() = 0 then simplify (); *)
if n_of_learnts >= 0 &&
Vec.size env.clauses_learnt - Vec.size env.elt_queue >= n_of_learnts
then reduce_db();
pick_branch_lit ()
done
(* check that clause is true *)
let check_clause (c:clause): unit =
let ok = Array_util.exists (fun a -> a.is_true) c.atoms in
assert ok
let check_vec vec = Vec.iter check_clause vec
let eval_level lit =
let var, negated = make_boolean_var lit in
if not var.pa.is_true && not var.na.is_true
then raise UndecidedLit
else assert (var.v_level >= 0);
let truth = var.pa.is_true in
let value = match negated with
| Formula_intf.Negated -> not truth
| Formula_intf.Same_sign -> truth
in
value, var.v_level
let eval lit = fst (eval_level lit)
let unsat_conflict () = env.unsat_conflict
let model () : (term * term) list =
let opt = function Some a -> a | None -> assert false in
Vec.fold
(fun acc e -> match e with
| Lit v -> (v.term, opt v.assigned) :: acc
| Atom _ -> acc)
[] env.elt_queue
(* fixpoint of propagation and decisions until a model is found, or a
conflict is reached *)
let solve (): unit =
Log.debug 5 "solve";
if is_unsat () then raise Unsat;
let n_of_conflicts = ref (to_float env.restart_first) in
let n_of_learnts = ref ((to_float (nb_clauses())) *. env.learntsize_factor) in
try
while true do
begin try
search (to_int !n_of_conflicts) (to_int !n_of_learnts)
with
| Restart ->
n_of_conflicts := !n_of_conflicts *. env.restart_inc;
n_of_learnts := !n_of_learnts *. env.learntsize_inc
| Sat ->
assert (env.elt_head = Vec.size env.elt_queue);
begin match Plugin.if_sat (full_slice ()) with
| Plugin_intf.Sat -> ()
| Plugin_intf.Unsat (l, p) ->
let atoms = List.rev_map create_atom l in
let c = make_clause (fresh_tname ()) atoms (Lemma p) in
Log.debugf info "Theory conflict clause: %a" (fun k -> k St.pp_clause c);
Stack.push (eliminate_doublons c) env.clauses_to_add
end;
if Stack.is_empty env.clauses_to_add then raise Sat
end
done
with Sat -> ()
let assume ?tag cnf =
List.iter
(fun l ->
let atoms = List.rev_map atom l in
let c = make_clause ?tag (fresh_hname ()) atoms Hyp in
Log.debugf debug "Assuming clause: @[<hov 2>%a@]" (fun k -> k pp_clause c);
let c' = eliminate_doublons c in
Log.debugf debug "Inserting clause: @[<hov 2>%a@]" (fun k -> k pp_clause c');
Stack.push c' env.clauses_to_add)
cnf
(* create a factice decision level for local assumptions *)
let push (): unit =
Log.debugf debug "Pushing a new user level" (fun k -> k);
cancel_until (base_level ());
Log.debugf debug "@[<v>Status:@,@[<hov 2>trail: %d - %d@,%a@]"
(fun k -> k env.elt_head env.th_head (Vec.print ~sep:"" St.pp) env.elt_queue);
begin match propagate () with
| Some confl ->
report_unsat confl
| None ->
Log.debugf debug "@[<v>Current trail:@,@[<hov>%a@]@]"
(fun k -> k (Vec.print ~sep:"" St.pp) env.elt_queue);
Log.debugf info "Creating new user level" (fun k -> k);
new_decision_level ();
Vec.push env.user_levels (Vec.size env.clauses_temp);
assert (decision_level () = base_level ())
end
(* pop the last factice decision level *)
let pop (): unit =
if base_level () = 0 then
Log.debugf warn "Cannot pop (already at level 0)" (fun k -> k)
else begin
Log.debugf info "Popping user level" (fun k -> k);
assert (base_level () > 0);
env.unsat_conflict <- None;
let n = Vec.last env.user_levels in
Vec.pop env.user_levels; (* before the [cancel_until]! *)
(* Add the root clauses to the clauses to add *)
Stack.iter (fun c -> Stack.push c env.clauses_to_add) env.clauses_root;
Stack.clear env.clauses_root;
(* remove from env.clauses_temp the now invalid caluses. *)
Vec.shrink env.clauses_temp (Vec.size env.clauses_temp - n);
assert (Vec.for_all (fun c -> Array.length c.atoms = 1) env.clauses_temp);
assert (Vec.for_all (fun c -> c.atoms.(0).var.v_level <= base_level ()) env.clauses_temp);
cancel_until (base_level ())
end
(* Add local hyps to the current decision level *)
let local l =
let aux lit =
let a = atom lit in
Log.debugf info "Local assumption: @[%a@]" (fun k-> k pp_atom a);
assert (decision_level () = base_level ());
if a.is_true then ()
else
let c = make_clause (fresh_hname ()) [a] Local in
Log.debugf debug "Temp clause: @[%a@]" (fun k -> k pp_clause c);
Vec.push env.clauses_temp c;
if a.neg.is_true then begin
(* conflict between assumptions: UNSAT *)
report_unsat c;
end else begin
(* Grow the heap, because when the lit is backtracked,
it will be added to the heap. *)
Iheap.grow_to_at_least env.order (St.nb_elt ());
(* make a decision, propagate *)
let level = decision_level() in
enqueue_bool a ~level (Bcp c);
end
in
assert (base_level () > 0);
match env.unsat_conflict with
| None ->
Log.debugf info "Adding local assumption" (fun k -> k);
cancel_until (base_level ());
List.iter aux l
| Some _ ->
Log.debugf warn "Cannot add local assumption (already unsat)" (fun k -> k)
(* Check satisfiability *)
let check_clause c =
let res = Array_util.exists (fun a -> a.is_true) c.atoms in
if not res then begin
Log.debugf debug "Clause not satisfied: @[<hov>%a@]"
(fun k -> k St.pp_clause c);
false
end else
true
let check_vec v =
Vec.for_all check_clause v
let check_stack s =
try
Stack.iter (fun c -> if not (check_clause c) then raise Exit) s;
true
with Exit ->
false
let check () =
Stack.is_empty env.clauses_to_add &&
check_stack env.clauses_root &&
check_vec env.clauses_hyps &&
check_vec env.clauses_learnt &&
check_vec env.clauses_temp
(* Unsafe access to internal data *)
let hyps () = env.clauses_hyps
let history () = env.clauses_learnt
let temp () = env.clauses_temp
let trail () = env.elt_queue
end