sidekick/src/base-solver/Form.ml
Simon Cruanes 80b50e8744 refactor: add solver instance in sidekick base
move some functor instantiations from `sidekick-bin.smtlib` to
`sidekick-base.solver` so they're usable from a library.
2021-07-03 22:28:57 -04:00

190 lines
5.5 KiB
OCaml

(** Formulas (boolean terms).
This module defines function symbols, constants, and views
to manipulate boolean formulas in {!Sidekick_base}.
This is useful to have the ability to use boolean connectives instead
of being limited to clauses; by using {!Sidekick_th_bool_static},
the formulas are turned into clauses automatically for you.
*)
open Sidekick_base
module T = Term
open Sidekick_th_bool_static
exception Not_a_th_term
let id_and = ID.make "and"
let id_or = ID.make "or"
let id_imply = ID.make "=>"
let view_id fid args =
if ID.equal fid id_and then (
B_and (IArray.to_iter args)
) else if ID.equal fid id_or then (
B_or (IArray.to_iter args)
) else if ID.equal fid id_imply && IArray.length args >= 2 then (
(* conclusion is stored first *)
let len = IArray.length args in
B_imply (IArray.to_iter_sub args 1 (len-1), IArray.get args 0)
) else (
raise_notrace Not_a_th_term
)
let view_as_bool (t:T.t) : (T.t, _) bool_view =
match T.view t with
| Bool b -> B_bool b
| Not u -> B_not u
| Eq (a, b) when Ty.is_bool (T.ty a) -> B_equiv (a,b)
| Ite (a,b,c) -> B_ite(a,b,c)
| App_fun ({fun_id; _}, args) ->
(try view_id fun_id args with Not_a_th_term -> B_atom t)
| _ -> B_atom t
module Funs = struct
let get_ty _ _ = Ty.bool()
let abs ~self _a =
match T.view self with
| Not u -> u, false
| _ -> self, true
(* no congruence closure for boolean terms *)
let relevant _id _ _ = false
let eval id args =
let open Value in
match view_id id args with
| B_bool b -> Value.bool b
| B_not (V_bool b) -> Value.bool (not b)
| B_and a when Iter.for_all Value.is_true a -> Value.true_
| B_and a when Iter.exists Value.is_false a -> Value.false_
| B_or a when Iter.exists Value.is_true a -> Value.true_
| B_or a when Iter.for_all Value.is_false a -> Value.false_
| B_imply (_, V_bool true) -> Value.true_
| B_imply (a,_) when Iter.exists Value.is_false a -> Value.true_
| B_imply (a,b) when Iter.for_all Value.is_true a && Value.is_false b -> Value.false_
| B_ite(a,b,c) ->
if Value.is_true a then b
else if Value.is_false a then c
else Error.errorf "non boolean value %a in ite" Value.pp a
| B_equiv (a,b) | B_eq(a,b) -> Value.bool (Value.equal a b)
| B_xor (a,b) | B_neq(a,b) -> Value.bool (not (Value.equal a b))
| B_atom v -> v
| B_opaque_bool t -> Error.errorf "cannot evaluate opaque bool %a" pp t
| B_not _ | B_and _ | B_or _ | B_imply _
-> Error.errorf "non boolean value in boolean connective"
let mk_fun ?(do_cc=false) id : Fun.t =
{fun_id=id;
fun_view=Fun_def {
pp=None; abs; ty=get_ty; relevant; do_cc; eval=eval id; }; }
let and_ = mk_fun id_and
let or_ = mk_fun id_or
let imply = mk_fun id_imply
let ite = Term.ite
end
let as_id id (t:T.t) : T.t IArray.t option =
match T.view t with
| App_fun ({fun_id; _}, args) when ID.equal id fun_id -> Some args
| _ -> None
(* flatten terms of the given ID *)
let flatten_id op sign (l:T.t list) : T.t list =
CCList.flat_map
(fun t -> match as_id op t with
| Some args -> IArray.to_list args
| None when (sign && T.is_true t) || (not sign && T.is_false t) ->
[] (* idempotent *)
| None -> [t])
l
let and_l st l =
match flatten_id id_and true l with
| [] -> T.true_ st
| l when List.exists T.is_false l -> T.false_ st
| [x] -> x
| args -> T.app_fun st Funs.and_ (IArray.of_list args)
let or_l st l =
match flatten_id id_or false l with
| [] -> T.false_ st
| l when List.exists T.is_true l -> T.true_ st
| [x] -> x
| args -> T.app_fun st Funs.or_ (IArray.of_list args)
let and_ st a b = and_l st [a;b]
let or_ st a b = or_l st [a;b]
let and_a st a = and_l st (IArray.to_list a)
let or_a st a = or_l st (IArray.to_list a)
let eq = T.eq
let not_ = T.not_
let ite st a b c = match T.view a with
| T.Bool ba -> if ba then b else c
| _ -> T.ite st a b c
let equiv st a b =
if T.equal a b then T.true_ st
else if T.is_true a then b
else if T.is_true b then a
else if T.is_false a then not_ st b
else if T.is_false b then not_ st a
else T.eq st a b
let neq st a b = not_ st @@ eq st a b
let imply_a st xs y =
if IArray.is_empty xs then y
else T.app_fun st Funs.imply (IArray.append (IArray.singleton y) xs)
let imply_l st xs y = match xs with
| [] -> y
| _ -> T.app_fun st Funs.imply (IArray.of_list @@ y :: xs)
let imply st a b = imply_a st (IArray.singleton a) b
let xor st a b = not_ st (equiv st a b)
let distinct_l tst l =
match l with
| [] | [_] -> T.true_ tst
| l ->
(* turn into [and_{i<j} t_i != t_j] *)
let cs =
CCList.diagonal l |> List.map (fun (a,b) -> neq tst a b)
in
and_l tst cs
let mk_bool st = function
| B_bool b -> T.bool st b
| B_atom t -> t
| B_and l -> and_a st l
| B_or l -> or_a st l
| B_imply (a,b) -> imply_a st a b
| B_ite (a,b,c) -> ite st a b c
| B_equiv (a,b) -> equiv st a b
| B_xor (a,b) -> not_ st (equiv st a b)
| B_eq (a,b) -> T.eq st a b
| B_neq (a,b) -> not_ st (T.eq st a b)
| B_not t -> not_ st t
| B_opaque_bool t -> t
module Gensym = struct
type t = {
tst: T.state;
mutable fresh: int;
}
let create tst : t = {tst; fresh=0}
let fresh_term (self:t) ~pre (ty:Ty.t) : T.t =
let name = Printf.sprintf "_tseitin_%s%d" pre self.fresh in
self.fresh <- 1 + self.fresh;
let id = ID.make name in
T.const self.tst @@ Fun.mk_undef_const id ty
end
(* NOTE: no plugin produces new boolean formulas *)
let check_congruence_classes = false