sidekick/src/drup/sidekick_drup.ml
2021-08-11 09:30:53 -04:00

414 lines
13 KiB
OCaml

(** DRUP trace checker.
This module provides a checker for DRUP traces, including step-by-step
checking for traces that interleave DRUP steps with other kinds of steps.
*)
module Fmt = CCFormat
module VecI32 = VecI32
(* TODO: resolution proof construction, optionally *)
(* TODO: backward checking + pruning of traces *)
(** An instance of the checker *)
module type S = sig
module Atom : sig
type t = private int
val equal : t -> t -> bool
val compare : t -> t -> int
val hash : t -> int
val neg : t -> t
val sign : t -> bool
val pp : t Fmt.printer
type atom = t
val of_int_dimacs : int -> t
(** Turn a signed integer into an atom. Positive integers are
positive atoms, and [-i] is [neg (of_int i)].
@raise Invalid_argument if the argument is 0 *)
end
type atom = Atom.t
module Clause : sig
type store
val create : unit -> store
type t
val size : t -> int
val get : t -> int -> atom
val iter : f:(atom -> unit) -> t -> unit
val pp : t Fmt.printer
val of_list : store -> atom list -> t
end
type clause = Clause.t
module Checker : sig
type t
val create : Clause.store -> t
val add_clause : t -> Clause.t -> unit
val is_valid_drup : t -> Clause.t -> bool
val del_clause : t -> Clause.t -> unit
end
end
module Make() : S = struct
(** Boolean atoms *)
module Atom = struct
type t = int
type atom = t
let hash = CCHash.int
let equal : t -> t -> bool = (=)
let compare : t -> t -> int = compare
let[@inline] neg x = x lxor 1
let[@inline] of_int_dimacs x =
if x=0 then invalid_arg "Atom.of_int_dimacs: 0 is not acceptable";
let v = abs x lsl 1 in
if x < 0 then neg v else v
let[@inline] sign x = (x land 1) = 0
let[@inline] to_int x = (if sign x then 1 else -1) * (x lsr 1)
let pp out x =
Fmt.fprintf out "%s%d" (if sign x then "+" else "-") (x lsr 1)
let[@inline] of_int_unsafe i = i
let dummy = 0
module Assign = struct
type t = Bitvec.t
let create = Bitvec.create
let ensure_size = Bitvec.ensure_size
let is_true = Bitvec.get
let[@inline] is_false self (a:atom) : bool =
is_true self (neg a)
let[@inline] is_unassigned self a =
not (is_true self a) && not (is_false self a)
let set = Bitvec.set
end
module Map = struct
type 'a t = 'a Vec.t
let create () = Vec.create ()
let[@inline] ensure_has (self:_ t) a mk : unit =
(* size: 2+atom, because: 1+atom makes atom valid, and if it's positive,
2+atom is (¬atom)+1 *)
Vec.ensure_size_with self mk (2+(a:atom:>int))
let get = Vec.get
let set = Vec.set
end
module Stack = struct
include VecI32
let create()=create()
end
end
type atom = Atom.t
(** Boolean clauses *)
module Clause : sig
type store
val create : unit -> store
type t
val size : t -> int
val id : t -> int
val get : t -> int -> atom
val iter : f:(atom -> unit) -> t -> unit
val watches: t -> atom * atom
val set_watches : t -> atom * atom -> unit
val pp : t Fmt.printer
val of_list : store -> atom list -> t
module Set : CCSet.S with type elt = t
module Tbl : CCHashtbl.S with type key = t
end = struct
type t = {
id: int;
atoms: atom array;
mutable watches: atom * atom;
}
type store = {
mutable n: int;
}
let create(): store =
{ n=0; }
let[@inline] id self = self.id
let[@inline] size self = Array.length self.atoms
let[@inline] get self i = Array.get self.atoms i
let[@inline] watches self = self.watches
let[@inline] set_watches self w = self.watches <- w
let[@inline] iter ~f self =
for i=0 to Array.length self.atoms-1 do
f (Array.unsafe_get self.atoms i)
done
let pp out (self:t) =
let pp_watches out = function
| (p,q) when p=Atom.dummy || q=Atom.dummy -> ()
| (p,q) -> Fmt.fprintf out "@ :watches (%a,%a)" Atom.pp p Atom.pp q in
Fmt.fprintf out "(@[cl[%d]@ %a%a])"
self.id (Fmt.Dump.array Atom.pp) self.atoms pp_watches self.watches
let of_list self atoms : t =
(* normalize + find in table *)
let atoms = List.sort_uniq Atom.compare atoms |> Array.of_list in
let id = self.n in
self.n <- 1 + self.n;
let c = {atoms; id; watches=Atom.dummy, Atom.dummy} in
c
module As_key = struct
type nonrec t=t
let[@inline] hash a = CCHash.int a.id
let[@inline] equal a b = a.id = b.id
let[@inline] compare a b = compare a.id b.id
end
module Set = CCSet.Make(As_key)
module Tbl = CCHashtbl.Make(As_key)
end
type clause = Clause.t
(** Forward proof checker.
Each event is checked by reverse-unit propagation on previous events. *)
module Checker : sig
type t
val create : Clause.store -> t
val add_clause : t -> Clause.t -> unit
val is_valid_drup : t -> Clause.t -> bool
val del_clause : t -> Clause.t -> unit
end = struct
type t = {
cstore: Clause.store;
assign: Atom.Assign.t; (* atom -> is_true(atom) *)
trail: Atom.Stack.t; (* current assignment *)
mutable trail_ptr : int; (* offset in trail for propagation *)
active_clauses: unit Clause.Tbl.t;
watches: Clause.t Vec.t Atom.Map.t; (* atom -> clauses it watches *)
}
let create cstore : t =
{ trail=Atom.Stack.create();
trail_ptr = 0;
cstore;
active_clauses=Clause.Tbl.create 32;
assign=Atom.Assign.create();
watches=Atom.Map.create();
}
(* ensure data structures are big enough to handle [a] *)
let ensure_atom_ self (a:atom) =
Atom.Assign.ensure_size self.assign a;
(* size: 2+atom, because: 1+atom makes atom valid, and if it's positive,
2+atom is (¬atom)+1 *)
Atom.Map.ensure_has self.watches a (fun _ -> Vec.create ());
()
let[@inline] is_true self (a:atom) : bool =
Atom.Assign.is_true self.assign a
let[@inline] is_false self (a:atom) : bool =
Atom.Assign.is_false self.assign a
let[@inline] is_unassigned self a =
Atom.Assign.is_unassigned self.assign a
let add_watch_ self (a:atom) (c:clause) =
Vec.push (Atom.Map.get self.watches a) c
let remove_watch_ self (a:atom) idx =
let v = Atom.Map.get self.watches a in
Vec.fast_remove v idx
exception Conflict
let raise_conflict_ self a =
Log.debugf 5 (fun k->k"conflict on atom %a" Atom.pp a);
raise Conflict
(* set atom to true *)
let[@inline] set_atom_true (self:t) (a:atom) : unit =
if is_true self a then ()
else if is_false self a then raise_conflict_ self a
else (
Atom.Assign.set self.assign a true;
Atom.Stack.push self.trail a
)
(* print the trail *)
let pp_trail_ out self =
Fmt.fprintf out "(@[%a@])" (Fmt.iter Atom.pp) (Atom.Stack.to_iter self.trail)
exception Found_watch of atom
exception Is_sat
exception Is_undecided
(* check if [c] is false in current trail *)
let c_is_false_ self c =
try Clause.iter c ~f:(fun a -> if not (is_false self a) then raise Exit); true
with Exit -> false
type propagation_res =
| Keep
| Remove
(* do boolean propagation in [c], which is watched by the true literal [a] *)
let propagate_in_clause_ (self:t) (a:atom) (c:clause) : propagation_res =
assert (is_true self a);
let a1, a2 = Clause.watches c in
let na = Atom.neg a in
(* [q] is the other literal in [c] such that [¬q] watches [c]. *)
let q = if Atom.equal a1 na then a2 else (assert(a2==na); a1) in
try
if is_true self q then Keep (* clause is satisfied *)
else (
let n_unassigned = ref 0 in
let unassigned_a = ref a in (* an unassigned atom, if [!n_unassigned > 0] *)
if not (is_false self q) then unassigned_a := q;
begin
try
Clause.iter c
~f:(fun ai ->
if is_true self ai then raise Is_sat (* no watch update *)
else if is_unassigned self ai then (
incr n_unassigned;
if q <> ai then unassigned_a := ai;
if !n_unassigned >= 2 then raise Is_undecided; (* early exit *)
);
)
with Is_undecided -> ()
end;
if !n_unassigned = 0 then (
(* if we reach this point it means no literal is true, and none is
unassigned. So they're all false and we have a conflict. *)
assert (is_false self q);
raise_conflict_ self a;
) else if !n_unassigned = 1 then (
(* no lit is true, only one is unassigned: propagate it.
no need to update the watches as the clause is satisfied. *)
assert (is_unassigned self !unassigned_a);
let p = !unassigned_a in
Log.debugf 30 (fun k->k"(@[propagate@ :atom %a@ :reason %a@])" Atom.pp p Clause.pp c);
set_atom_true self p;
Keep
) else (
(* at least 2 unassigned, just update the watch literal to [¬p] *)
let p = !unassigned_a in
assert (p <> q);
Clause.set_watches c (q, p);
add_watch_ self (Atom.neg p) c;
Remove
);
)
with
| Is_sat -> Keep
let propagate_atom_ self (a:atom) : unit =
let v = Atom.Map.get self.watches a in
let i = ref 0 in
while !i < Vec.size v do
match propagate_in_clause_ self a (Vec.get v !i) with
| Keep -> incr i;
| Remove ->
remove_watch_ self a !i
done
(* perform boolean propagation in a fixpoint
@raise Conflict if a clause is false *)
let bcp_fixpoint_ (self:t) : unit =
Profile.with_ "bcp-fixpoint" @@ fun() ->
while self.trail_ptr < Atom.Stack.size self.trail do
let a = Atom.Stack.get self.trail self.trail_ptr in
Log.debugf 50 (fun k->k"(@[bcp@ :atom %a@])" Atom.pp a);
self.trail_ptr <- 1 + self.trail_ptr;
propagate_atom_ self a;
done
(* calls [f] and then restore trail to what it was *)
let with_restore_trail_ self f =
let trail_size0 = Atom.Stack.size self.trail in
let ptr0 = self.trail_ptr in
let restore () =
(* unassign new literals *)
for i=trail_size0 to Atom.Stack.size self.trail - 1 do
let a = Atom.Stack.get self.trail i in
assert (is_true self a);
Atom.Assign.set self.assign a false;
done;
(* remove literals from trail *)
Atom.Stack.shrink self.trail trail_size0;
self.trail_ptr <- ptr0
in
CCFun.finally ~h:restore ~f
(* add clause to the state *)
let add_clause (self:t) (c:Clause.t) =
Log.debugf 50 (fun k->k"(@[add-clause@ %a@])" Clause.pp c);
Clause.iter c ~f:(ensure_atom_ self);
Clause.Tbl.add self.active_clauses c ();
begin match Clause.size c with
| 0 -> ()
| 1 ->
set_atom_true self (Clause.get c 0);
| _ ->
let c0 = Clause.get c 0 in
let c1 = Clause.get c 1 in
assert (c0 <> c1);
Clause.set_watches c (c0,c1);
(* make sure watches are valid *)
if is_false self c0 then (
match propagate_in_clause_ self (Atom.neg c0) c with
| Keep -> add_watch_ self (Atom.neg c0) c;
| Remove -> ()
) else (
add_watch_ self (Atom.neg c0) c
);
if is_false self c1 then (
match propagate_in_clause_ self (Atom.neg c1) c with
| Keep -> add_watch_ self (Atom.neg c1) c;
| Remove -> ()
) else (
add_watch_ self (Atom.neg c1) c
)
end;
()
let is_valid_drup (self:t) (c:Clause.t) : bool =
(* negate [c], pushing each atom on trail, and see if we get [Conflict]
by pure propagation *)
try
with_restore_trail_ self @@ fun () ->
Clause.iter c
~f:(fun a ->
if is_true self a then raise_notrace Conflict; (* tautology *)
let a' = Atom.neg a in
if is_true self a' then () else (
set_atom_true self a'
));
bcp_fixpoint_ self;
(*
(* slow sanity check *)
Clause.Tbl.iter
(fun c () ->
if c_is_false_ self c then
Log.debugf 0 (fun k->k"clause is false: %a" Clause.pp c))
self.active_clauses;
*)
false
with Conflict ->
true
let del_clause (_self:t) (_c:Clause.t) : unit =
() (* TODO *)
end
end