sidekick/sat/solver.ml

977 lines
31 KiB
OCaml

(**************************************************************************)
(* *)
(* Alt-Ergo Zero *)
(* *)
(* Sylvain Conchon and Alain Mebsout *)
(* Universite Paris-Sud 11 *)
(* *)
(* Copyright 2011. This file is distributed under the terms of the *)
(* Apache Software License version 2.0 *)
(* *)
(**************************************************************************)
open Format
module Make (F : Formula_intf.S)
(St : Solver_types.S with type formula = F.t)
(Ex : Explanation.S with type atom = St.atom)
(Th : Theory_intf.S with type formula = F.t and type explanation = Ex.t) = struct
open St
module Res = Res.Make(St)(struct type t = Th.proof end)
exception Sat
exception Unsat of clause list
exception Restart
exception Conflict of clause
type env = {
(* si true_, les contraintes sont deja fausses *)
mutable is_unsat : bool;
mutable unsat_core : clause list;
(* clauses du probleme *)
mutable clauses : clause Vec.t;
(* clauses apprises *)
mutable learnts : clause Vec.t;
(* valeur de l'increment pour l'activite des clauses *)
mutable clause_inc : float;
(* valeur de l'increment pour l'activite des variables *)
mutable var_inc : float;
(* un vecteur des variables du probleme *)
mutable vars : var Vec.t;
(* la pile de decisions avec les faits impliques *)
mutable trail : atom Vec.t;
(* une pile qui pointe vers les niveaux de decision dans trail *)
mutable trail_lim : int Vec.t;
(* Tete de la File des faits unitaires a propager.
C'est un index vers le trail *)
mutable qhead : int;
(* Nombre des assignements top-level depuis la derniere
execution de 'simplify()' *)
mutable simpDB_assigns : int;
(* Nombre restant de propagations a faire avant la prochaine
execution de 'simplify()' *)
mutable simpDB_props : int;
(* Un tas ordone en fonction de l'activite des variables *)
mutable order : Iheap.t;
(* estimation de progressions, mis a jour par 'search()' *)
mutable progress_estimate : float;
(* *)
remove_satisfied : bool;
(* inverse du facteur d'acitivte des variables, vaut 1/0.999 par defaut *)
var_decay : float;
(* inverse du facteur d'activite des clauses, vaut 1/0.95 par defaut *)
clause_decay : float;
(* la limite de restart initiale, vaut 100 par defaut *)
mutable restart_first : int;
(* facteur de multiplication de restart limite, vaut 1.5 par defaut*)
restart_inc : float;
(* limite initiale du nombre de clause apprises, vaut 1/3
des clauses originales par defaut *)
mutable learntsize_factor : float;
(* multiplier learntsize_factor par cette valeur a chaque restart,
vaut 1.1 par defaut *)
learntsize_inc : float;
(* controler la minimisation des clauses conflit, vaut true par defaut *)
expensive_ccmin : bool;
(* controle la polarite a choisir lors de la decision *)
polarity_mode : bool;
mutable starts : int;
mutable decisions : int;
mutable propagations : int;
mutable conflicts : int;
mutable clauses_literals : int;
mutable learnts_literals : int;
mutable max_literals : int;
mutable tot_literals : int;
mutable nb_init_vars : int;
mutable nb_init_clauses : int;
mutable model : var Vec.t;
mutable tenv : Th.t;
mutable tenv_queue : Th.t Vec.t;
mutable tatoms_queue : atom Queue.t;
}
type state = {
env : env;
st_cpt_mk_var: int;
st_ma : varmap;
}
type t = state
let env = {
is_unsat = false;
unsat_core = [] ;
clauses = Vec.make 0 dummy_clause; (*sera mis a jour lors du parsing*)
learnts = Vec.make 0 dummy_clause; (*sera mis a jour lors du parsing*)
clause_inc = 1.;
var_inc = 1.;
vars = Vec.make 0 dummy_var; (*sera mis a jour lors du parsing*)
trail = Vec.make 601 dummy_atom;
trail_lim = Vec.make 601 (-105);
qhead = 0;
simpDB_assigns = -1;
simpDB_props = 0;
order = Iheap.init 0; (* sera mis a jour dans solve *)
progress_estimate = 0.;
remove_satisfied = true;
var_decay = 1. /. 0.95;
clause_decay = 1. /. 0.999;
restart_first = 100;
restart_inc = 1.5;
learntsize_factor = 1. /. 3. ;
learntsize_inc = 1.1;
expensive_ccmin = true;
polarity_mode = false;
starts = 0;
decisions = 0;
propagations = 0;
conflicts = 0;
clauses_literals = 0;
learnts_literals = 0;
max_literals = 0;
tot_literals = 0;
nb_init_vars = 0;
nb_init_clauses = 0;
model = Vec.make 0 dummy_var;
tenv = Th.empty();
tenv_queue = Vec.make 100 Th.dummy;
tatoms_queue = Queue.create ();
}
let f_weight i j =
(Vec.get env.vars j).weight < (Vec.get env.vars i).weight
let f_filter i =
(Vec.get env.vars i).level < 0
let insert_var_order v =
Iheap.insert f_weight env.order v.vid
let var_decay_activity () =
env.var_inc <- env.var_inc *. env.var_decay
let clause_decay_activity () =
env.clause_inc <- env.clause_inc *. env.clause_decay
let var_bump_activity v =
v.weight <- v.weight +. env.var_inc;
if v.weight > 1e100 then begin
for i = 0 to env.vars.Vec.sz - 1 do
(Vec.get env.vars i).weight <- (Vec.get env.vars i).weight *. 1e-100
done;
env.var_inc <- env.var_inc *. 1e-100;
end;
if Iheap.in_heap env.order v.vid then
Iheap.decrease f_weight env.order v.vid
let clause_bump_activity c =
c.activity <- c.activity +. env.clause_inc;
if c.activity > 1e20 then begin
for i = 0 to env.learnts.Vec.sz - 1 do
(Vec.get env.learnts i).activity <-
(Vec.get env.learnts i).activity *. 1e-20;
done;
env.clause_inc <- env.clause_inc *. 1e-20
end
let decision_level () = Vec.size env.trail_lim
let nb_assigns () = Vec.size env.trail
let nb_clauses () = Vec.size env.clauses
let nb_learnts () = Vec.size env.learnts
let nb_vars () = Vec.size env.vars
let new_decision_level() =
Vec.push env.trail_lim (Vec.size env.trail);
Vec.push env.tenv_queue env.tenv; (* save the current tenv *)
Log.debug 5 "New decision level : %d (%d in env queue)(%d in trail)"
(Vec.size env.trail_lim) (Vec.size env.tenv_queue) (Vec.size env.trail);
()
let attach_clause c =
Vec.push (Vec.get c.atoms 0).neg.watched c;
Vec.push (Vec.get c.atoms 1).neg.watched c;
Log.debug 8 "%a <-- %a" St.pp_atom (Vec.get c.atoms 0).neg St.pp_clause c;
Log.debug 8 "%a <-- %a" St.pp_atom (Vec.get c.atoms 1).neg St.pp_clause c;
if c.learnt then
env.learnts_literals <- env.learnts_literals + Vec.size c.atoms
else
env.clauses_literals <- env.clauses_literals + Vec.size c.atoms
let detach_clause c =
c.removed <- true;
(*
Vec.remove (Vec.get c.atoms 0).neg.watched c;
Vec.remove (Vec.get c.atoms 1).neg.watched c;
*)
if c.learnt then
env.learnts_literals <- env.learnts_literals - Vec.size c.atoms
else
env.clauses_literals <- env.clauses_literals - Vec.size c.atoms
let remove_clause c = detach_clause c
let satisfied c =
try
for i = 0 to Vec.size c.atoms - 1 do
if (Vec.get c.atoms i).is_true then raise Exit
done;
false
with Exit -> true
(* annule tout jusqu'a lvl *exclu* *)
let cancel_until lvl =
Log.debug 5 "Bactracking to decision level %d (excluded)" lvl;
if decision_level () > lvl then begin
env.qhead <- Vec.get env.trail_lim lvl;
for c = Vec.size env.trail - 1 downto env.qhead do
let a = Vec.get env.trail c in
a.is_true <- false;
a.neg.is_true <- false;
a.var.level <- -1;
a.var.reason <- None;
a.var.vpremise <- [];
insert_var_order a.var
done;
Queue.clear env.tatoms_queue;
env.tenv <- Vec.get env.tenv_queue lvl; (* recover the right tenv *)
Vec.shrink env.trail ((Vec.size env.trail) - env.qhead);
Vec.shrink env.trail_lim ((Vec.size env.trail_lim) - lvl);
Vec.shrink env.tenv_queue ((Vec.size env.tenv_queue) - lvl)
end;
assert (Vec.size env.trail_lim = Vec.size env.tenv_queue)
let rec pick_branch_lit () =
let max = Iheap.remove_min f_weight env.order in
let v = Vec.get env.vars max in
if v.level>= 0 then begin
assert (v.pa.is_true || v.na.is_true);
pick_branch_lit ()
end else
v
let enqueue a lvl reason =
assert (not a.is_true && not a.neg.is_true &&
a.var.level < 0 && a.var.reason = None && lvl >= 0);
(* Garder la reason car elle est utile pour les unsat-core *)
(*let reason = if lvl = 0 then None else reason in*)
a.is_true <- true;
a.var.level <- lvl;
a.var.reason <- reason;
Log.debug 8 "Enqueue: %a" pp_atom a;
Vec.push env.trail a
let progress_estimate () =
let prg = ref 0. in
let nbv = to_float (nb_vars()) in
let lvl = decision_level () in
let _F = 1. /. nbv in
for i = 0 to lvl do
let _beg = if i = 0 then 0 else Vec.get env.trail_lim (i-1) in
let _end = if i=lvl then Vec.size env.trail else Vec.get env.trail_lim i in
prg := !prg +. _F**(to_float i) *. (to_float (_end - _beg))
done;
!prg /. nbv
let propagate_in_clause a c i watched new_sz =
let atoms = c.atoms in
let first = Vec.get atoms 0 in
if first == a.neg then begin (* le literal faux doit etre dans .(1) *)
Vec.set atoms 0 (Vec.get atoms 1);
Vec.set atoms 1 first
end;
let first = Vec.get atoms 0 in
if first.is_true then begin
(* clause vraie, la garder dans les watched *)
Vec.set watched !new_sz c;
incr new_sz;
end
else
try (* chercher un nouveau watcher *)
for k = 2 to Vec.size atoms - 1 do
let ak = Vec.get atoms k in
if not (ak.neg.is_true) then begin
(* Watcher Trouve: mettre a jour et sortir *)
Vec.set atoms 1 ak;
Vec.set atoms k a.neg;
Vec.push ak.neg.watched c;
Log.debug 8 "New watcher (%a) for clause : %a" St.pp_atom ak.neg St.pp_clause c;
raise Exit
end
done;
(* Watcher NON Trouve *)
if first.neg.is_true then begin
(* la clause est fausse *)
env.qhead <- Vec.size env.trail;
for k = i to Vec.size watched - 1 do
Vec.set watched !new_sz (Vec.get watched k);
incr new_sz;
done;
Log.debug 3 "Conflict found : %a" St.pp_clause c;
raise (Conflict c)
end
else begin
(* la clause est unitaire *)
Vec.set watched !new_sz c;
incr new_sz;
Log.debug 5 "Unit clause : %a" St.pp_clause c;
enqueue first (decision_level ()) (Some c)
end
with Exit -> ()
let propagate_atom a res =
Log.debug 8 "Propagating %a" St.pp_atom a;
let watched = a.watched in
Log.debug 10 "Watching %a :" St.pp_atom a;
Vec.iter (fun c -> Log.debug 10 " %a" St.pp_clause c) watched;
let new_sz_w = ref 0 in
begin
try
for i = 0 to Vec.size watched - 1 do
let c = Vec.get watched i in
if not c.removed then propagate_in_clause a c i watched new_sz_w
done;
with Conflict c -> assert (!res = None); res := Some c
end;
let dead_part = Vec.size watched - !new_sz_w in
Vec.shrink watched dead_part
let expensive_theory_propagate () = None
(* try *)
(* if D1.d then eprintf "expensive_theory_propagate@."; *)
(* ignore(Th.expensive_processing env.tenv); *)
(* if D1.d then eprintf "expensive_theory_propagate => None@."; *)
(* None *)
(* with Th.Inconsistent dep -> *)
(* if D1.d then eprintf "expensive_theory_propagate => Inconsistent@."; *)
(* Some dep *)
let theory_propagate () =
let facts = ref [] in
while not (Queue.is_empty env.tatoms_queue) do
let a = Queue.pop env.tatoms_queue in
if a.is_true then
(*let ex = if a.var.level > 0 then Ex.singleton a else Ex.empty in*)
let ex = Ex.singleton a in (* Usefull for debugging *)
facts := (a.lit, ex) :: !facts
else
if a.neg.is_true then
(*let ex = if a.var.level > 0 then Ex.singleton a.neg else Ex.empty in*)
let ex = Ex.singleton a.neg in (* Usefull for debugging *)
facts := (a.neg.lit, ex) :: !facts
else assert false;
done;
try
let full_model = nb_assigns() = env.nb_init_vars in
env.tenv <-
List.fold_left
(fun t (a,ex) -> let t = Th.assume ~cs:true a ex t in t)
env.tenv !facts;
if full_model then expensive_theory_propagate ()
else None
with Th.Inconsistent dep ->
(* eprintf "th inconsistent : %a @." Ex.print dep; *)
Some dep
let propagate () =
let num_props = ref 0 in
let res = ref None in
(*assert (Queue.is_empty env.tqueue);*)
while env.qhead < Vec.size env.trail do
let a = Vec.get env.trail env.qhead in
env.qhead <- env.qhead + 1;
incr num_props;
propagate_atom a res;
Queue.push a env.tatoms_queue;
done;
env.propagations <- env.propagations + !num_props;
env.simpDB_props <- env.simpDB_props - !num_props;
!res
let analyze c_clause =
let pathC = ref 0 in
let learnt = ref [] in
let cond = ref true in
let blevel = ref 0 in
let seen = ref [] in
let c = ref c_clause in
let tr_ind = ref (Vec.size env.trail - 1) in
let size = ref 1 in
let history = ref [] in
while !cond do
if !c.learnt then clause_bump_activity !c;
history := !c :: !history;
(* visit the current predecessors *)
for j = 0 to Vec.size !c.atoms - 1 do
let q = Vec.get !c.atoms j in
(*printf "I visit %a@." D1.atom q;*)
assert (q.is_true || q.neg.is_true && q.var.level >= 0); (* Pas sur *)
if not q.var.seen && q.var.level > 0 then begin
var_bump_activity q.var;
q.var.seen <- true;
seen := q :: !seen;
if q.var.level >= decision_level () then begin
incr pathC
end else begin
learnt := q :: !learnt;
incr size;
blevel := max !blevel q.var.level
end
end
done;
(* look for the next node to expand *)
while not (Vec.get env.trail !tr_ind).var.seen do decr tr_ind done;
decr pathC;
let p = Vec.get env.trail !tr_ind in
decr tr_ind;
match !pathC, p.var.reason with
| 0, _ ->
cond := false;
learnt := p.neg :: (List.rev !learnt)
| n, None -> assert false
| n, Some cl -> c := cl
done;
List.iter (fun q -> q.var.seen <- false) !seen;
!blevel, !learnt, !history, !size
let f_sort_db c1 c2 =
let sz1 = Vec.size c1.atoms in
let sz2 = Vec.size c2.atoms in
let c = compare c1.activity c2.activity in
if sz1 = sz2 && c = 0 then 0
else
if sz1 > 2 && (sz2 = 2 || c < 0) then -1
else 1
let locked c = false(*
try
for i = 0 to Vec.size env.vars - 1 do
match (Vec.get env.vars i).reason with
| Some c' when c ==c' -> raise Exit
| _ -> ()
done;
false
with Exit -> true*)
let reduce_db () = ()
(*
let extra_lim = env.clause_inc /. (to_float (Vec.size env.learnts)) in
Vec.sort env.learnts f_sort_db;
let lim2 = Vec.size env.learnts in
let lim1 = lim2 / 2 in
let j = ref 0 in
for i = 0 to lim1 - 1 do
let c = Vec.get env.learnts i in
if Vec.size c.atoms > 2 && not (locked c) then
remove_clause c
else
begin Vec.set env.learnts !j c; incr j end
done;
for i = lim1 to lim2 - 1 do
let c = Vec.get env.learnts i in
if Vec.size c.atoms > 2 && not (locked c) && c.activity < extra_lim then
remove_clause c
else
begin Vec.set env.learnts !j c; incr j end
done;
Vec.shrink env.learnts (lim2 - !j)
*)
let remove_satisfied vec =
let j = ref 0 in
let k = Vec.size vec - 1 in
for i = 0 to k do
let c = Vec.get vec i in
if satisfied c then remove_clause c
else begin
Vec.set vec !j (Vec.get vec i);
incr j
end
done;
Vec.shrink vec (k + 1 - !j)
module HUC = Hashtbl.Make
(struct type t = clause let equal = (==) let hash = Hashtbl.hash end)
let report_b_unsat ({atoms=atoms} as confl) =
let l = ref [confl] in
for i = 0 to Vec.size atoms - 1 do
let v = (Vec.get atoms i).var in
l := List.rev_append v.vpremise !l;
match v.reason with None -> () | Some c -> l := c :: !l
done;
(*
if false then begin
eprintf "@.>>UNSAT Deduction made from:@.";
List.iter
(fun hc ->
eprintf " %a@." pp_clause hc
)!l;
end;
*)
let uc = HUC.create 17 in
let rec roots todo =
match todo with
| [] -> ()
| c::r ->
for i = 0 to Vec.size c.atoms - 1 do
let v = (Vec.get c.atoms i).var in
if not v.seen then begin
v.seen <- true;
roots v.vpremise;
match v.reason with None -> () | Some r -> roots [r];
end
done;
match c.cpremise with
| [] -> if not (HUC.mem uc c) then HUC.add uc c (); roots r
| prems -> roots prems; roots r
in roots !l;
let unsat_core = HUC.fold (fun c _ l -> c :: l) uc [] in
(*
if false then begin
eprintf "@.>>UNSAT_CORE:@.";
List.iter
(fun hc ->
eprintf " %a@." pp_clause hc
)unsat_core;
end;
*)
env.is_unsat <- true;
env.unsat_core <- unsat_core;
raise (Unsat unsat_core)
let report_t_unsat dep =
let l =
Ex.fold_atoms
(fun {var=v} l ->
let l = List.rev_append v.vpremise l in
match v.reason with None -> l | Some c -> c :: l
) dep []
in
(*
if false then begin
eprintf "@.>>T-UNSAT Deduction made from:@.";
List.iter
(fun hc ->
eprintf " %a@." pp_clause hc
)l;
end;
*)
let uc = HUC.create 17 in
let rec roots todo =
match todo with
| [] -> ()
| c::r ->
for i = 0 to Vec.size c.atoms - 1 do
let v = (Vec.get c.atoms i).var in
if not v.seen then begin
v.seen <- true;
roots v.vpremise;
match v.reason with None -> () | Some r -> roots [r];
end
done;
match c.cpremise with
| [] -> if not (HUC.mem uc c) then HUC.add uc c (); roots r
| prems -> roots prems; roots r
in roots l;
let unsat_core = HUC.fold (fun c _ l -> c :: l) uc [] in
(*
if false then begin
eprintf "@.>>T-UNSAT_CORE:@.";
List.iter
(fun hc ->
eprintf " %a@." pp_clause hc
) unsat_core;
end;
*)
env.is_unsat <- true;
env.unsat_core <- unsat_core;
raise (Unsat unsat_core)
let simplify () =
assert (decision_level () = 0);
if env.is_unsat then raise (Unsat env.unsat_core);
begin
match propagate () with
| Some confl -> report_b_unsat confl
| None ->
match theory_propagate () with
Some dep -> report_t_unsat dep
| None -> ()
end;
if nb_assigns() <> env.simpDB_assigns && env.simpDB_props <= 0 then begin
if Vec.size env.learnts > 0 then remove_satisfied env.learnts;
if env.remove_satisfied then remove_satisfied env.clauses;
(*Iheap.filter env.order f_filter f_weight;*)
env.simpDB_assigns <- nb_assigns ();
env.simpDB_props <- env.clauses_literals + env.learnts_literals;
end
let record_learnt_clause blevel learnt history size =
begin match learnt with
| [] -> assert false
| [fuip] ->
assert (blevel = 0);
Log.debug 2 "Unit clause learnt : %a" St.pp_atom fuip;
fuip.var.vpremise <- history;
enqueue fuip 0 None
| fuip :: _ ->
let name = fresh_lname () in
let lclause = make_clause name learnt size true history in
Log.debug 2 "New clause learnt : %a" St.pp_clause lclause;
Vec.push env.learnts lclause;
attach_clause lclause;
clause_bump_activity lclause;
enqueue fuip blevel (Some lclause)
end;
var_decay_activity ();
clause_decay_activity ()
let check_inconsistence_of dep =
try
let env = ref (Th.empty()) in ();
Ex.iter_atoms
(fun atom ->
let t = Th.assume ~cs:true atom.lit (Ex.singleton atom) !env in
env := t)
dep;
(* ignore (Th.expensive_processing !env); *)
assert false
with Th.Inconsistent _ -> ()
let theory_analyze dep =
let atoms, sz, max_lvl, c_hist =
Ex.fold_atoms
(fun a (acc, sz, max_lvl, c_hist) ->
let c_hist = List.rev_append a.var.vpremise c_hist in
let c_hist = match a.var.reason with
| None -> c_hist | Some r -> r:: c_hist in
if a.var.level = 0 then acc, sz, max_lvl, c_hist
else a.neg :: acc, sz + 1, max max_lvl a.var.level, c_hist
) dep ([], 0, 0, [])
in
if atoms = [] then begin
(* check_inconsistence_of dep; *)
report_t_unsat dep
(* une conjonction de faits unitaires etaient deja unsat *)
end;
let name = fresh_dname() in
let c_clause = make_clause name atoms sz false c_hist in
(* eprintf "c_clause: %a@." Debug.clause c_clause; *)
c_clause.removed <- true;
let pathC = ref 0 in
let learnt = ref [] in
let cond = ref true in
let blevel = ref 0 in
let seen = ref [] in
let c = ref c_clause in
let tr_ind = ref (Vec.size env.trail - 1) in
let size = ref 1 in
let history = ref [] in
while !cond do
if !c.learnt then clause_bump_activity !c;
history := !c :: !history;
(* visit the current predecessors *)
for j = 0 to Vec.size !c.atoms - 1 do
let q = Vec.get !c.atoms j in
(*printf "I visit %a@." D1.atom q;*)
assert (q.is_true || q.neg.is_true && q.var.level >= 0); (* Pas sur *)
if not q.var.seen && q.var.level > 0 then begin
var_bump_activity q.var;
q.var.seen <- true;
seen := q :: !seen;
if q.var.level >= max_lvl then incr pathC
else begin
learnt := q :: !learnt;
incr size;
blevel := max !blevel q.var.level
end
end
done;
(* look for the next node to expand *)
while not (Vec.get env.trail !tr_ind).var.seen do decr tr_ind done;
decr pathC;
let p = Vec.get env.trail !tr_ind in
decr tr_ind;
match !pathC, p.var.reason with
| 0, _ ->
cond := false;
learnt := p.neg :: (List.rev !learnt)
| n, None -> assert false
| n, Some cl -> c := cl
done;
List.iter (fun q -> q.var.seen <- false) !seen;
!blevel, !learnt, !history, !size
let add_boolean_conflict confl =
env.conflicts <- env.conflicts + 1;
if decision_level() = 0 then report_b_unsat confl; (* Top-level conflict *)
let blevel, learnt, history, size = analyze confl in
cancel_until blevel;
record_learnt_clause blevel learnt history size
let search n_of_conflicts n_of_learnts =
let conflictC = ref 0 in
env.starts <- env.starts + 1;
while (true) do
match propagate () with
| Some confl -> (* Conflict *)
incr conflictC;
add_boolean_conflict confl
| None -> (* No Conflict *)
match theory_propagate () with
| Some dep ->
incr conflictC;
env.conflicts <- env.conflicts + 1;
if decision_level() = 0 then report_t_unsat dep; (* T-L conflict *)
let blevel, learnt, history, size = theory_analyze dep in
cancel_until blevel;
record_learnt_clause blevel learnt history size
| None ->
if nb_assigns () = env.nb_init_vars then raise Sat;
if n_of_conflicts >= 0 && !conflictC >= n_of_conflicts then
begin
env.progress_estimate <- progress_estimate();
cancel_until 0;
raise Restart
end;
if decision_level() = 0 then simplify ();
if n_of_learnts >= 0 &&
Vec.size env.learnts - nb_assigns() >= n_of_learnts then
reduce_db();
env.decisions <- env.decisions + 1;
new_decision_level();
let next = pick_branch_lit () in
let current_level = decision_level () in
assert (next.level < 0);
Log.debug 5 "Deciding on %a" St.pp_atom next.pa;
enqueue next.pa current_level None
done
let check_clause c =
let b = ref false in
let atoms = c.atoms in
for i = 0 to Vec.size atoms - 1 do
let a = Vec.get atoms i in
b := !b || a.is_true
done;
assert (!b)
let check_vec vec =
for i = 0 to Vec.size vec - 1 do check_clause (Vec.get vec i) done
let check_model () =
check_vec env.clauses;
check_vec env.learnts
let solve () =
if env.is_unsat then raise (Unsat env.unsat_core);
let n_of_conflicts = ref (to_float env.restart_first) in
let n_of_learnts = ref ((to_float (nb_clauses())) *. env.learntsize_factor) in
try
while true do
(try search (to_int !n_of_conflicts) (to_int !n_of_learnts);
with Restart -> ());
n_of_conflicts := !n_of_conflicts *. env.restart_inc;
n_of_learnts := !n_of_learnts *. env.learntsize_inc;
done;
with
| Sat ->
(*check_model ();*)
raise Sat
| (Unsat cl) as e ->
(* check_unsat_core cl; *)
raise e
exception Trivial
let partition atoms init =
let rec partition_aux trues unassigned falses init = function
| [] -> trues @ unassigned @ falses, init
| a::r ->
if a.is_true then
if a.var.level = 0 then raise Trivial
else (a::trues) @ unassigned @ falses @ r, init
else if a.neg.is_true then
if a.var.level = 0 then
partition_aux trues unassigned falses
(List.rev_append (a.var.vpremise) init) r
else partition_aux trues unassigned (a::falses) init r
else partition_aux trues (a::unassigned) falses init r
in
partition_aux [] [] [] init atoms
let add_clause ~cnumber atoms =
if env.is_unsat then raise (Unsat env.unsat_core);
let init_name = string_of_int cnumber in
let init0 = make_clause init_name atoms (List.length atoms) false [] in
try
let atoms, init =
if decision_level () = 0 then
let atoms, init = List.fold_left
(fun (atoms, init) a ->
if a.is_true then raise Trivial;
if a.neg.is_true then
atoms, (List.rev_append (a.var.vpremise) init)
else a::atoms, init
) ([], [init0]) atoms in
List.fast_sort (fun a b -> a.var.vid - b.var.vid) atoms, init
else partition atoms [init0]
in
let size = List.length atoms in
match atoms with
| [] ->
report_b_unsat init0;
| a::_::_ ->
let name = fresh_name () in
let clause = make_clause name atoms size false init in
attach_clause clause;
Vec.push env.clauses clause;
if a.neg.is_true then begin
let lvl = List.fold_left (fun m a -> max m a.var.level) 0 atoms in
cancel_until lvl;
add_boolean_conflict clause
end
| [a] ->
cancel_until 0;
a.var.vpremise <- init;
enqueue a 0 None;
match propagate () with
None -> () | Some confl -> report_b_unsat confl
with Trivial -> ()
let add_clauses cnf ~cnumber =
List.iter (add_clause ~cnumber) cnf;
match theory_propagate () with
None -> () | Some dep -> report_t_unsat dep
let init_solver cnf ~cnumber =
let nbv, _ = made_vars_info () in
let nbc = env.nb_init_clauses + List.length cnf in
Vec.grow_to_by_double env.vars nbv;
Iheap.grow_to_by_double env.order nbv;
List.iter
(List.iter
(fun a ->
Vec.set env.vars a.var.vid a.var;
insert_var_order a.var
)
) cnf;
env.nb_init_vars <- nbv;
Vec.grow_to_by_double env.model nbv;
Vec.grow_to_by_double env.clauses nbc;
Vec.grow_to_by_double env.learnts nbc;
env.nb_init_clauses <- nbc;
add_clauses cnf ~cnumber
let assume cnf ~cnumber =
let cnf = List.map (List.map St.add_atom) cnf in
init_solver cnf ~cnumber
let clear () =
let empty_theory = Th.empty () in
env.is_unsat <- false;
env.unsat_core <- [];
env.clauses <- Vec.make 0 dummy_clause;
env.learnts <- Vec.make 0 dummy_clause;
env.clause_inc <- 1.;
env.var_inc <- 1.;
env.vars <- Vec.make 0 dummy_var;
env.qhead <- 0;
env.simpDB_assigns <- -1;
env.simpDB_props <- 0;
env.order <- Iheap.init 0; (* sera mis a jour dans solve *)
env.progress_estimate <- 0.;
env.restart_first <- 100;
env.starts <- 0;
env.decisions <- 0;
env.propagations <- 0;
env.conflicts <- 0;
env.clauses_literals <- 0;
env.learnts_literals <- 0;
env.max_literals <- 0;
env.tot_literals <- 0;
env.nb_init_vars <- 0;
env.nb_init_clauses <- 0;
env.tenv <- empty_theory;
env.model <- Vec.make 0 dummy_var;
env.trail <- Vec.make 601 dummy_atom;
env.trail_lim <- Vec.make 601 (-105);
env.tenv_queue <- Vec.make 100 Th.dummy;
env.tatoms_queue <- Queue.create ();
St.clear ()
let copy (v : 'a) : 'a = Marshal.from_string (Marshal.to_string v []) 0
let save () =
let sv =
{ env = env;
st_cpt_mk_var = !St.cpt_mk_var;
st_ma = !St.ma }
in
copy sv
let restore { env = s_env; st_cpt_mk_var = st_cpt_mk_var; st_ma = st_ma } =
env.is_unsat <- s_env.is_unsat;
env.unsat_core <- s_env.unsat_core;
env.clauses <- s_env.clauses;
env.learnts <- s_env.learnts;
env.clause_inc <- s_env.clause_inc;
env.var_inc <- s_env.var_inc;
env.vars <- s_env.vars;
env.qhead <- s_env.qhead;
env.simpDB_assigns <- s_env.simpDB_assigns;
env.simpDB_props <- s_env.simpDB_props;
env.order <- s_env.order;
env.progress_estimate <- s_env.progress_estimate;
env.restart_first <- s_env.restart_first;
env.starts <- s_env.starts;
env.decisions <- s_env.decisions;
env.propagations <- s_env.propagations;
env.conflicts <- s_env.conflicts;
env.clauses_literals <- s_env.clauses_literals;
env.learnts_literals <- s_env.learnts_literals;
env.max_literals <- s_env.max_literals;
env.tot_literals <- s_env.tot_literals;
env.nb_init_vars <- s_env.nb_init_vars;
env.nb_init_clauses <- s_env.nb_init_clauses;
env.tenv <- s_env.tenv;
env.model <- s_env.model;
env.trail <- s_env.trail;
env.trail_lim <- s_env.trail_lim;
env.tenv_queue <- s_env.tenv_queue;
env.tatoms_queue <- s_env.tatoms_queue;
env.learntsize_factor <- s_env.learntsize_factor;
St.cpt_mk_var := st_cpt_mk_var;
St.ma := st_ma
let eval lit =
let var, negated = make_var lit in
let truth = var.pa.is_true in
if negated then not truth else truth
end