sidekick/src/base/Form.ml
2022-07-14 22:09:13 -04:00

203 lines
5.6 KiB
OCaml

(** Formulas (boolean terms).
This module defines function symbols, constants, and views
to manipulate boolean formulas in {!Sidekick_base}.
This is useful to have the ability to use boolean connectives instead
of being limited to clauses; by using {!Sidekick_th_bool_static},
the formulas are turned into clauses automatically for you.
*)
module T = Base_types.Term
module Ty = Base_types.Ty
module Fun = Base_types.Fun
module Value = Base_types.Value
open Sidekick_th_bool_static
exception Not_a_th_term
let id_and = ID.make "and"
let id_or = ID.make "or"
let id_imply = ID.make "=>"
let view_id fid args =
if ID.equal fid id_and then
B_and (IArray.to_iter args)
else if ID.equal fid id_or then
B_or (IArray.to_iter args)
else if ID.equal fid id_imply && IArray.length args >= 2 then (
(* conclusion is stored last *)
let len = IArray.length args in
B_imply (IArray.to_iter_sub args 0 (len - 1), IArray.get args (len - 1))
) else
raise_notrace Not_a_th_term
let view_as_bool (t : T.t) : (T.t, _) bool_view =
match T.view t with
| Bool b -> B_bool b
| Not u -> B_not u
| Eq (a, b) when Ty.is_bool (T.ty a) -> B_equiv (a, b)
| Ite (a, b, c) -> B_ite (a, b, c)
| App_fun ({ fun_id; _ }, args) ->
(try view_id fun_id args with Not_a_th_term -> B_atom t)
| _ -> B_atom t
module Funs = struct
let get_ty _ _ = Ty.bool ()
let abs ~self _a =
match T.view self with
| Not u -> u, false
| _ -> self, true
(* no congruence closure for boolean terms *)
let relevant _id _ _ = false
let eval id args =
let open Value in
match view_id id args with
| B_bool b -> Value.bool b
| B_not (V_bool b) -> Value.bool (not b)
| B_and a when Iter.for_all Value.is_true a -> Value.true_
| B_and a when Iter.exists Value.is_false a -> Value.false_
| B_or a when Iter.exists Value.is_true a -> Value.true_
| B_or a when Iter.for_all Value.is_false a -> Value.false_
| B_imply (_, V_bool true) -> Value.true_
| B_imply (a, _) when Iter.exists Value.is_false a -> Value.true_
| B_imply (a, b) when Iter.for_all Value.is_true a && Value.is_false b ->
Value.false_
| B_ite (a, b, c) ->
if Value.is_true a then
b
else if Value.is_false a then
c
else
Error.errorf "non boolean value %a in ite" Value.pp a
| B_equiv (a, b) | B_eq (a, b) -> Value.bool (Value.equal a b)
| B_xor (a, b) | B_neq (a, b) -> Value.bool (not (Value.equal a b))
| B_atom v -> v
| B_opaque_bool t -> Error.errorf "cannot evaluate opaque bool %a" pp t
| B_not _ | B_and _ | B_or _ | B_imply _ ->
Error.errorf "non boolean value in boolean connective"
let mk_fun ?(do_cc = false) id : Fun.t =
{
fun_id = id;
fun_view =
Fun_def { pp = None; abs; ty = get_ty; relevant; do_cc; eval = eval id };
}
let and_ = mk_fun id_and
let or_ = mk_fun id_or
let imply = mk_fun id_imply
let ite = T.ite
end
let as_id id (t : T.t) : T.t IArray.t option =
match T.view t with
| App_fun ({ fun_id; _ }, args) when ID.equal id fun_id -> Some args
| _ -> None
(* flatten terms of the given ID *)
let flatten_id op sign (l : T.t list) : T.t list =
CCList.flat_map
(fun t ->
match as_id op t with
| Some args -> IArray.to_list args
| None when (sign && T.is_true t) || ((not sign) && T.is_false t) ->
[] (* idempotent *)
| None -> [ t ])
l
let and_l st l =
match flatten_id id_and true l with
| [] -> T.true_ st
| l when List.exists T.is_false l -> T.false_ st
| [ x ] -> x
| args -> T.app_fun st Funs.and_ (IArray.of_list args)
let or_l st l =
match flatten_id id_or false l with
| [] -> T.false_ st
| l when List.exists T.is_true l -> T.true_ st
| [ x ] -> x
| args -> T.app_fun st Funs.or_ (IArray.of_list args)
let and_ st a b = and_l st [ a; b ]
let or_ st a b = or_l st [ a; b ]
let and_a st a = and_l st (IArray.to_list a)
let or_a st a = or_l st (IArray.to_list a)
let eq = T.eq
let not_ = T.not_
let ite st a b c =
match T.view a with
| T.Bool ba ->
if ba then
b
else
c
| _ -> T.ite st a b c
let equiv st a b =
if T.equal a b then
T.true_ st
else if T.is_true a then
b
else if T.is_true b then
a
else if T.is_false a then
not_ st b
else if T.is_false b then
not_ st a
else
T.eq st a b
let neq st a b = not_ st @@ eq st a b
let imply_a st xs y =
if IArray.is_empty xs then
y
else
T.app_fun st Funs.imply (IArray.append xs (IArray.singleton y))
let imply_l st xs y =
match xs with
| [] -> y
| _ -> imply_a st (IArray.of_list xs) y
let imply st a b = imply_a st (IArray.singleton a) b
let xor st a b = not_ st (equiv st a b)
let distinct_l tst l =
match l with
| [] | [ _ ] -> T.true_ tst
| l ->
(* turn into [and_{i<j} t_i != t_j] *)
let cs = CCList.diagonal l |> List.map (fun (a, b) -> neq tst a b) in
and_l tst cs
let mk_bool st = function
| B_bool b -> T.bool st b
| B_atom t -> t
| B_and l -> and_a st l
| B_or l -> or_a st l
| B_imply (a, b) -> imply_a st a b
| B_ite (a, b, c) -> ite st a b c
| B_equiv (a, b) -> equiv st a b
| B_xor (a, b) -> not_ st (equiv st a b)
| B_eq (a, b) -> T.eq st a b
| B_neq (a, b) -> not_ st (T.eq st a b)
| B_not t -> not_ st t
| B_opaque_bool t -> t
module Gensym = struct
type t = { tst: T.store; mutable fresh: int }
let create tst : t = { tst; fresh = 0 }
let fresh_term (self : t) ~pre (ty : Ty.t) : T.t =
let name = Printf.sprintf "_tseitin_%s%d" pre self.fresh in
self.fresh <- 1 + self.fresh;
let id = ID.make name in
T.const self.tst @@ Fun.mk_undef_const id ty
end