sidekick/src/arith/lra/sidekick_arith_lra.ml

501 lines
16 KiB
OCaml

(** {1 Linear Rational Arithmetic} *)
(* Reference:
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_LRA *)
open Sidekick_core
module Simplex2 = Simplex2
module Predicate = Predicate
module Linear_expr = Linear_expr
module S_op = Simplex2.Op
type pred = Linear_expr_intf.bool_op = Leq | Geq | Lt | Gt | Eq | Neq
type op = Plus | Minus
type 'a lra_view =
| LRA_pred of pred * 'a * 'a
| LRA_op of op * 'a * 'a
| LRA_mult of Q.t * 'a
| LRA_const of Q.t
| LRA_simplex_var of 'a (* an opaque variable *)
| LRA_simplex_pred of 'a * S_op.t * Q.t (* an atomic constraint *)
| LRA_other of 'a
let map_view f (l:_ lra_view) : _ lra_view =
begin match l with
| LRA_pred (p, a, b) -> LRA_pred (p, f a, f b)
| LRA_op (p, a, b) -> LRA_op (p, f a, f b)
| LRA_mult (n,a) -> LRA_mult (n, f a)
| LRA_const q -> LRA_const q
| LRA_simplex_var v -> LRA_simplex_var (f v)
| LRA_simplex_pred (v, op, q) -> LRA_simplex_pred (f v, op, q)
| LRA_other x -> LRA_other (f x)
end
module type ARG = sig
module S : Sidekick_core.SOLVER
type term = S.T.Term.t
type ty = S.T.Ty.t
val view_as_lra : term -> term lra_view
(** Project the term into the theory view *)
val mk_lra : S.T.Term.state -> term lra_view -> term
(** Make a term from the given theory view *)
val ty_lra : S.T.Term.state -> ty
val mk_and : S.T.Term.state -> term -> term -> term
val mk_or : S.T.Term.state -> term -> term -> term
val has_ty_real : term -> bool
(** Does this term have the type [Real] *)
module Gensym : sig
type t
val create : S.T.Term.state -> t
val tst : t -> S.T.Term.state
val copy : t -> t
val fresh_term : t -> pre:string -> S.T.Ty.t -> term
(** Make a fresh term of the given type *)
end
end
module type S = sig
module A : ARG
type state
val create : A.S.T.Term.state -> state
val theory : A.S.theory
end
module Make(A : ARG) : S with module A = A = struct
module A = A
module Ty = A.S.T.Ty
module T = A.S.T.Term
module Lit = A.S.Solver_internal.Lit
module SI = A.S.Solver_internal
module N = A.S.Solver_internal.CC.N
module Tag = struct
type t =
| By_def
| Lit of Lit.t
| CC_eq of N.t * N.t
let pp out = function
| By_def -> Fmt.string out "<bydef>"
| Lit l -> Fmt.fprintf out "(@[lit %a@])" Lit.pp l
| CC_eq (n1,n2) -> Fmt.fprintf out "(@[cc-eq@ %a@ %a@])" N.pp n1 N.pp n2
let to_lits si = function
| By_def -> []
| Lit l -> [l]
| CC_eq (n1,n2) ->
SI.CC.explain_eq (SI.cc si) n1 n2
end
module SimpVar
: Linear_expr.VAR
with type t = A.term
and type lit = Tag.t
= struct
type t = A.term
let pp = A.S.T.Term.pp
let compare = A.S.T.Term.compare
type lit = Tag.t
let pp_lit = Tag.pp
end
module LE_ = Linear_expr.Make(struct include Q let pp=pp_print end)(SimpVar)
module LE = LE_.Expr
module SimpSolver = Simplex2.Make(SimpVar)
module LConstr = SimpSolver.Constraint
type state = {
tst: T.state;
simps: T.t T.Tbl.t; (* cache *)
gensym: A.Gensym.t;
neq_encoded: unit T.Tbl.t;
(* if [a != b] asserted and not in this table, add clause [a = b \/ a<b \/ a>b] *)
needs_th_combination: LE_.Comb.t T.Tbl.t; (* terms that require theory combination *)
t_defs: LE.t T.Tbl.t; (* term definitions *)
pred_defs: (pred * LE.t * LE.t * T.t * T.t) T.Tbl.t; (* predicate definitions *)
local_eqs: (N.t * N.t) Backtrack_stack.t; (* inferred by the congruence closure *)
simplex: SimpSolver.t;
}
(* TODO *)
let create tst : state =
{ tst;
simps=T.Tbl.create 128;
gensym=A.Gensym.create tst;
neq_encoded=T.Tbl.create 16;
needs_th_combination=T.Tbl.create 8;
t_defs=T.Tbl.create 8;
pred_defs=T.Tbl.create 16;
local_eqs = Backtrack_stack.create();
simplex=SimpSolver.create ();
}
let push_level self =
SimpSolver.push_level self.simplex;
Backtrack_stack.push_level self.local_eqs;
()
let pop_levels self n =
SimpSolver.pop_levels self.simplex n;
Backtrack_stack.pop_levels self.local_eqs n ~f:(fun _ -> ());
()
(* FIXME
let simplify (self:state) (simp:SI.Simplify.t) (t:T.t) : T.t option =
let tst = self.tst in
match A.view_as_bool t with
| B_bool _ -> None
| B_not u when is_true u -> Some (T.bool tst false)
| B_not u when is_false u -> Some (T.bool tst true)
| B_not _ -> None
| B_opaque_bool _ -> None
| B_and a ->
if IArray.exists is_false a then Some (T.bool tst false)
else if IArray.for_all is_true a then Some (T.bool tst true)
else None
| B_or a ->
if IArray.exists is_true a then Some (T.bool tst true)
else if IArray.for_all is_false a then Some (T.bool tst false)
else None
| B_imply (args, u) ->
(* turn into a disjunction *)
let u =
or_a tst @@
IArray.append (IArray.map (not_ tst) args) (IArray.singleton u)
in
Some u
| B_ite (a,b,c) ->
(* directly simplify [a] so that maybe we never will simplify one
of the branches *)
let a = SI.Simplify.normalize simp a in
begin match A.view_as_bool a with
| B_bool true -> Some b
| B_bool false -> Some c
| _ ->
None
end
| B_equiv (a,b) when is_true a -> Some b
| B_equiv (a,b) when is_false a -> Some (not_ tst b)
| B_equiv (a,b) when is_true b -> Some a
| B_equiv (a,b) when is_false b -> Some (not_ tst a)
| B_equiv _ -> None
| B_eq (a,b) when T.equal a b -> Some (T.bool tst true)
| B_eq _ -> None
| B_atom _ -> None
*)
let fresh_term self ~pre ty = A.Gensym.fresh_term self.gensym ~pre ty
let fresh_lit (self:state) ~mk_lit ~pre : Lit.t =
let t = fresh_term ~pre self Ty.bool in
mk_lit t
let pp_pred_def out (p,l1,l2) : unit =
Fmt.fprintf out "(@[%a@ :l1 %a@ :l2 %a@])" Predicate.pp p LE.pp l1 LE.pp l2
(* turn the term into a linear expression. Apply [f] on leaves. *)
let rec as_linexp ~f (t:T.t) : LE.t =
let open LE.Infix in
match A.view_as_lra t with
| LRA_other _ -> LE.monomial1 (f t)
| LRA_pred _ | LRA_simplex_pred _ ->
Error.errorf "type error: in linexp, LRA predicate %a" T.pp t
| LRA_op (op, t1, t2) ->
let t1 = as_linexp ~f t1 in
let t2 = as_linexp ~f t2 in
begin match op with
| Plus -> t1 + t2
| Minus -> t1 - t2
end
| LRA_mult (n, x) ->
let t = as_linexp ~f x in
LE.( n * t )
| LRA_simplex_var v -> LE.monomial1 v
| LRA_const q -> LE.of_const q
let as_linexp_id = as_linexp ~f:CCFun.id
(* TODO: keep the linexps until they're asserted;
TODO: but use simplification in preprocess
*)
(* preprocess linear expressions away *)
let preproc_lra (self:state) si ~recurse ~mk_lit ~add_clause (t:T.t) : T.t option =
Log.debugf 50 (fun k->k "lra.preprocess %a" T.pp t);
let tst = SI.tst si in
let mk_eq x q =
let t1 = A.mk_lra tst (LRA_simplex_pred (x, Leq, q)) in
let t2 = A.mk_lra tst (LRA_simplex_pred (x, Geq, q)) in
A.mk_and tst t1 t2
and mk_neq x q =
let t1 = A.mk_lra tst (LRA_simplex_pred (x, Lt, q)) in
let t2 = A.mk_lra tst (LRA_simplex_pred (x, Gt, q)) in
A.mk_or tst t1 t2
in
match A.view_as_lra t with
| LRA_pred (pred, t1, t2) ->
let l1 = as_linexp ~f:recurse t1 in
let l2 = as_linexp ~f:recurse t2 in
let le = LE.(l1 - l2) in
let le_comb, le_const = LE.comb le, LE.const le in
let le_const = Q.neg le_const in
(* now we have [le_comb <pred> le_const] *)
begin match LE_.Comb.as_singleton le_comb, pred with
| None, _ ->
(* non trivial linexp, give it a fresh name in the simplex *)
let proxy = fresh_term self ~pre:"_le" (T.ty t1) in
T.Tbl.replace self.needs_th_combination proxy le_comb;
let le_comb = LE_.Comb.to_list le_comb in
List.iter (fun (_,v) -> SimpSolver.add_var self.simplex v) le_comb;
SimpSolver.define self.simplex proxy le_comb;
let new_t =
match pred with
| Eq -> mk_eq proxy le_const
| Neq -> mk_neq proxy le_const
| Leq -> A.mk_lra tst (LRA_simplex_pred (proxy, S_op.Leq, le_const))
| Lt -> A.mk_lra tst (LRA_simplex_pred (proxy, S_op.Lt, le_const))
| Geq -> A.mk_lra tst (LRA_simplex_pred (proxy, S_op.Geq, le_const))
| Gt -> A.mk_lra tst (LRA_simplex_pred (proxy, S_op.Gt, le_const))
in
Log.debugf 10 (fun k->k "lra.preprocess@ :%a@ :into %a" T.pp t T.pp new_t);
Some new_t
| Some (coeff, v), Eq ->
let q = Q.(le_const / coeff) in
Some (mk_eq v q) (* turn into [c.v <= const /\ … >= ..] *)
| Some (coeff, v), Neq ->
let q = Q.(le_const / coeff) in
Some (mk_neq v q) (* turn into [c.v < const \/ … > ..] *)
| Some (coeff, v), pred ->
(* [c . v <= const] becomes a direct simplex constraint [v <= const/c] *)
let negate = Q.sign coeff < 0 in
let q = Q.div le_const coeff in
let op = match pred with
| Leq -> S_op.Leq
| Lt -> S_op.Lt
| Geq -> S_op.Geq
| Gt -> S_op.Gt
| Eq | Neq -> assert false
in
let op = if negate then S_op.neg_sign op else op in
let new_t = A.mk_lra tst (LRA_simplex_pred (v, op, q)) in
Log.debugf 10 (fun k->k "lra.preprocess@ :%a@ :into %a" T.pp t T.pp new_t);
Some new_t
end
| LRA_op _ | LRA_mult _ ->
let le = as_linexp ~f:recurse t in
let le_comb, le_const = LE.comb le, LE.const le in
let le_comb = LE_.Comb.to_list le_comb in
List.iter (fun (_,v) -> SimpSolver.add_var self.simplex v) le_comb;
let proxy = fresh_term self ~pre:"_le" (T.ty t) in
if Q.(le_const = zero) then (
(* if there is no constant, define [proxy] as [proxy := le_comb] and
return [proxy] *)
SimpSolver.define self.simplex proxy le_comb;
Some proxy
) else (
(* a bit more complicated: we cannot just define [proxy := le_comb]
because of the coefficient.
Instead we assert [proxy - le_comb = le_const] using a secondary
variable [proxy2 := le_comb - proxy]
and asserting [proxy2 = -le_const] *)
let proxy2 = fresh_term self ~pre:"_le_diff" (T.ty t) in
SimpSolver.define self.simplex proxy2
((Q.minus_one, proxy) :: le_comb);
add_clause [
mk_lit (A.mk_lra tst (LRA_simplex_pred (proxy2, Leq, Q.neg le_const)))
];
add_clause [
mk_lit (A.mk_lra tst (LRA_simplex_pred (proxy2, Geq, Q.neg le_const)))
];
Some proxy
)
| LRA_other t when A.has_ty_real t ->
let le = LE_.Comb.monomial1 t in
T.Tbl.replace self.needs_th_combination t le;
None
| LRA_const _ | LRA_simplex_pred _ | LRA_simplex_var _ | LRA_other _ -> None
module Q_map = CCMap.Make(Q)
(* raise conflict from certificate *)
let fail_with_cert si acts cert : 'a =
(* TODO: check certificate *)
let confl =
SimpSolver.Unsat_cert.lits cert
|> CCList.flat_map (Tag.to_lits si)
|> List.rev_map SI.Lit.neg
in
SI.raise_conflict si acts confl SI.P.default
let check_simplex_ self si acts : SimpSolver.Subst.t =
Log.debug 5 "lra: call arith solver";
let res = Profile.with1 "simplex.solve" SimpSolver.check self.simplex in
begin match res with
| SimpSolver.Sat m -> m
| SimpSolver.Unsat cert ->
Log.debugf 10
(fun k->k "(@[lra.check.unsat@ :cert %a@])"
SimpSolver.Unsat_cert.pp cert);
fail_with_cert si acts cert
end
let partial_check_ self si acts trail : unit =
Profile.with_ "lra.partial-check" @@ fun () ->
trail
(fun lit ->
let sign = SI.Lit.sign lit in
let lit_t = SI.Lit.term lit in
match A.view_as_lra lit_t with
| LRA_simplex_pred (v, op, q) ->
let op = if sign then op else S_op.neg_sign op in
let constr = SimpSolver.Constraint.mk v op q in
Log.debugf 10
(fun k->k "(@[lra.partial-check.assert@ %a@])"
SimpSolver.Constraint.pp constr);
begin
try
SimpSolver.add_var self.simplex v;
SimpSolver.add_constraint self.simplex constr (Tag.Lit lit)
with SimpSolver.E_unsat cert ->
Log.debugf 10
(fun k->k "(@[lra.partial-check.unsat@ :cert %a@])"
SimpSolver.Unsat_cert.pp cert);
fail_with_cert si acts cert
end
| _ -> ());
(* incremental check *)
ignore (check_simplex_ self si acts : SimpSolver.Subst.t);
()
let final_check_ (self:state) si (acts:SI.actions) (_trail:_ Iter.t) : unit =
Log.debug 5 "(th-lra.final-check)";
Profile.with_ "lra.final-check" @@ fun () ->
(* FIXME
(* add congruence closure equalities *)
Backtrack_stack.iter self.local_eqs
~f:(fun (n1,n2) ->
let t1 = N.term n1 |> as_linexp_id in
let t2 = N.term n2 |> as_linexp_id in
let c = LConstr.eq0 LE.(t1 - t2) in
let lit = Tag.CC_eq (n1,n2) in
SimpSolver.add_constr simplex c lit);
*)
Log.debug 5 "lra: call arith solver";
let model = check_simplex_ self si acts in
Log.debugf 20 (fun k->k "(@[lra.model@ %a@])" SimpSolver.Subst.pp model);
Log.debug 5 "lra: solver returns SAT";
let n_th_comb =
T.Tbl.keys self.needs_th_combination |> Iter.length
in
if n_th_comb > 0 then (
Log.debugf 5
(fun k->k "(@[LRA.needs-th-combination@ :n-lits %d@])" n_th_comb);
);
Log.debugf 50
(fun k->k "(@[LRA.needs-th-combination@ :lits %a@])"
(Util.pp_iter @@ Fmt.within "`" "`" T.pp) (T.Tbl.keys self.needs_th_combination));
(* FIXME: theory combination
let lazy model = model in
Log.debugf 30 (fun k->k "(@[LRA.model@ %a@])" FM_A.pp_model model);
(* theory combination: for [t1,t2] terms in [self.needs_th_combination]
that have same value, but are not provably equal, push
decision [t1=t2] into the SAT solver. *)
begin
let by_val: T.t list Q_map.t =
T.Tbl.to_iter self.needs_th_combination
|> Iter.map (fun (t,le) -> FM_A.eval_model model le, t)
|> Iter.fold
(fun m (q,t) ->
let l = Q_map.get_or ~default:[] q m in
Q_map.add q (t::l) m)
Q_map.empty
in
Q_map.iter
(fun _q ts ->
begin match ts with
| [] | [_] -> ()
| ts ->
(* several terms! see if they are already equal *)
CCList.diagonal ts
|> List.iter
(fun (t1,t2) ->
Log.debugf 50
(fun k->k "(@[LRA.th-comb.check-pair[val=%a]@ %a@ %a@])"
Q.pp_print _q T.pp t1 T.pp t2);
(* FIXME: we need these equalities to be considered
by the congruence closure *)
if not (SI.cc_are_equal si t1 t2) then (
Log.debug 50 "LRA.th-comb.must-decide-equal";
let t = A.mk_lra (SI.tst si) (LRA_pred (Eq, t1, t2)) in
let lit = SI.mk_lit si acts t in
SI.push_decision si acts lit
)
)
end)
by_val;
()
end;
*)
()
let create_and_setup si =
Log.debug 2 "(th-lra.setup)";
let st = create (SI.tst si) in
(* TODO SI.add_simplifier si (simplify st); *)
SI.add_preprocess si (preproc_lra st);
SI.on_final_check si (final_check_ st);
SI.on_partial_check si (partial_check_ st);
SI.on_cc_post_merge si
(fun _ _ n1 n2 ->
if A.has_ty_real (N.term n1) then (
Backtrack_stack.push st.local_eqs (n1, n2)
));
(* SI.add_preprocess si (cnf st); *)
(* TODO: theory combination *)
st
let theory =
A.S.mk_theory
~name:"th-lra"
~create_and_setup ~push_level ~pop_levels
()
end