mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-05 19:00:33 -05:00
310 lines
9.2 KiB
OCaml
310 lines
9.2 KiB
OCaml
open Sidekick_core
|
|
module Intf = Intf
|
|
open Intf
|
|
module SI = SMT.Solver_internal
|
|
module Proof_rules = Proof_rules
|
|
module T = Term
|
|
|
|
module type ARG = Intf.ARG
|
|
|
|
module Make (A : ARG) : sig
|
|
val theory : SMT.theory
|
|
end = struct
|
|
type state = {
|
|
tst: T.store;
|
|
n_simplify: int Stat.counter;
|
|
n_clauses: int Stat.counter;
|
|
}
|
|
|
|
let create ~stat tst : state =
|
|
{
|
|
tst;
|
|
n_simplify = Stat.mk_int stat "th.bool.simplified";
|
|
n_clauses = Stat.mk_int stat "th.bool.cnf-clauses";
|
|
}
|
|
|
|
let[@inline] not_ tst t = A.mk_bool tst (B_not t)
|
|
let[@inline] eq tst a b = A.mk_bool tst (B_eq (a, b))
|
|
|
|
let is_true t =
|
|
match T.as_bool_val t with
|
|
| Some true -> true
|
|
| _ -> false
|
|
|
|
let is_false t =
|
|
match T.as_bool_val t with
|
|
| Some false -> true
|
|
| _ -> false
|
|
|
|
let unfold_and t : T.Set.t =
|
|
let rec aux acc t =
|
|
match A.view_as_bool t with
|
|
| B_and l -> List.fold_left aux acc l
|
|
| _ -> T.Set.add t acc
|
|
in
|
|
aux T.Set.empty t
|
|
|
|
let unfold_or t : T.Set.t =
|
|
let rec aux acc t =
|
|
match A.view_as_bool t with
|
|
| B_or l -> List.fold_left aux acc l
|
|
| _ -> T.Set.add t acc
|
|
in
|
|
aux T.Set.empty t
|
|
|
|
let simplify (self : state) (simp : Simplify.t) (t : T.t) :
|
|
(T.t * Proof.step_id Iter.t) option =
|
|
let tst = self.tst in
|
|
|
|
let proof = Simplify.proof simp in
|
|
let steps = ref [] in
|
|
let add_step_ s = steps := s :: !steps in
|
|
let mk_step_ r = Proof.Tracer.add_step proof r in
|
|
|
|
let add_step_eq a b ~using ~c0 : unit =
|
|
add_step_ @@ mk_step_
|
|
@@ fun () ->
|
|
Proof.Core_rules.lemma_rw_clause c0 ~using
|
|
~res:[ Lit.atom tst (A.mk_bool tst (B_eq (a, b))) ]
|
|
in
|
|
|
|
let[@inline] ret u =
|
|
Stat.incr self.n_simplify;
|
|
Some (u, Iter.of_list !steps)
|
|
in
|
|
|
|
(* proof is [t <=> u] *)
|
|
let ret_bequiv t1 u =
|
|
(add_step_ @@ mk_step_ @@ fun () -> Proof_rules.lemma_bool_equiv t1 u);
|
|
ret u
|
|
in
|
|
|
|
match A.view_as_bool t with
|
|
| B_bool _ -> None
|
|
| B_not u when is_true u -> ret_bequiv t (T.false_ tst)
|
|
| B_not u when is_false u -> ret_bequiv t (T.true_ tst)
|
|
| B_not _ -> None
|
|
| B_atom _ -> None
|
|
| B_and _ ->
|
|
let set = unfold_and t in
|
|
if T.Set.exists is_false set then
|
|
ret (T.false_ tst)
|
|
else if T.Set.for_all is_true set then
|
|
ret (T.true_ tst)
|
|
else (
|
|
let t' = A.mk_bool tst (B_and (T.Set.to_list set)) in
|
|
if not (T.equal t t') then
|
|
ret_bequiv t t'
|
|
else
|
|
None
|
|
)
|
|
| B_or _ ->
|
|
let set = unfold_or t in
|
|
if T.Set.exists is_true set then
|
|
ret (T.true_ tst)
|
|
else if T.Set.for_all is_false set then
|
|
ret (T.false_ tst)
|
|
else (
|
|
let t' = A.mk_bool tst (B_or (T.Set.to_list set)) in
|
|
if not (T.equal t t') then
|
|
ret_bequiv t t'
|
|
else
|
|
None
|
|
)
|
|
| B_imply (a, b) ->
|
|
(* always rewrite [a => b] to [¬a \/ b] *)
|
|
let u = A.mk_bool tst (B_or [ T.not tst a; b ]) in
|
|
ret u
|
|
| B_ite (a, b, c) ->
|
|
(* directly simplify [a] so that maybe we never will simplify one
|
|
of the branches *)
|
|
let a, prf_a = Simplify.normalize_t simp a in
|
|
Option.iter add_step_ prf_a;
|
|
(match A.view_as_bool a with
|
|
| B_bool true ->
|
|
add_step_eq t b ~using:(Option.to_list prf_a)
|
|
~c0:(mk_step_ @@ fun () -> Proof_rules.lemma_ite_true ~ite:t);
|
|
ret b
|
|
| B_bool false ->
|
|
add_step_eq t c ~using:(Option.to_list prf_a)
|
|
~c0:(mk_step_ @@ fun () -> Proof_rules.lemma_ite_false ~ite:t);
|
|
ret c
|
|
| _ -> None)
|
|
| B_equiv (a, b) when is_true a -> ret_bequiv t b
|
|
| B_equiv (a, b) when is_false a -> ret_bequiv t (not_ tst b)
|
|
| B_equiv (a, b) when is_true b -> ret_bequiv t a
|
|
| B_equiv (a, b) when is_false b -> ret_bequiv t (not_ tst a)
|
|
| B_xor (a, b) when is_false a -> ret_bequiv t b
|
|
| B_xor (a, b) when is_true a -> ret_bequiv t (not_ tst b)
|
|
| B_xor (a, b) when is_false b -> ret_bequiv t a
|
|
| B_xor (a, b) when is_true b -> ret_bequiv t (not_ tst a)
|
|
| B_equiv _ | B_xor _ -> None
|
|
| B_eq (a, b) when T.equal a b -> ret_bequiv t (T.true_ tst)
|
|
| B_neq (a, b) when T.equal a b -> ret_bequiv t (T.true_ tst)
|
|
| B_eq _ | B_neq _ -> None
|
|
|
|
(* TODO: polarity? *)
|
|
let cnf (self : state) (_preproc : SMT.Preprocess.t) ~is_sub:_ ~recurse
|
|
(module PA : SI.PREPROCESS_ACTS) (t : T.t) : T.t option =
|
|
Log.debugf 50 (fun k -> k "(@[th-bool.cnf@ %a@])" T.pp t);
|
|
let[@inline] mk_step_ r = Proof.Tracer.add_step PA.proof_tracer r in
|
|
|
|
(* handle boolean equality *)
|
|
let equiv_ (self : state) ~is_xor ~t ~box_t t_a t_b : unit =
|
|
let t_a = recurse t_a in
|
|
let t_b = recurse t_b in
|
|
let a = PA.mk_lit t_a in
|
|
let b = PA.mk_lit t_b in
|
|
let a =
|
|
if is_xor then
|
|
Lit.neg a
|
|
else
|
|
a
|
|
in
|
|
(* [a xor b] is [(¬a) = b] *)
|
|
let lit = PA.mk_lit box_t in
|
|
|
|
(* proxy => a<=> b,
|
|
¬proxy => a xor b *)
|
|
Stat.incr self.n_clauses;
|
|
PA.add_clause
|
|
[ Lit.neg lit; Lit.neg a; b ]
|
|
(if is_xor then
|
|
mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "xor-e+" [ t ]
|
|
else
|
|
mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "eq-e" [ t; t_a ]);
|
|
|
|
Stat.incr self.n_clauses;
|
|
PA.add_clause
|
|
[ Lit.neg lit; Lit.neg b; a ]
|
|
(if is_xor then
|
|
mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "xor-e-" [ t ]
|
|
else
|
|
mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "eq-e" [ t; t_b ]);
|
|
|
|
Stat.incr self.n_clauses;
|
|
PA.add_clause [ lit; a; b ]
|
|
(if is_xor then
|
|
mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "xor-i" [ t; t_a ]
|
|
else
|
|
mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "eq-i+" [ t ]);
|
|
|
|
Stat.incr self.n_clauses;
|
|
PA.add_clause
|
|
[ lit; Lit.neg a; Lit.neg b ]
|
|
(if is_xor then
|
|
mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "xor-i" [ t; t_b ]
|
|
else
|
|
mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "eq-i-" [ t ])
|
|
in
|
|
|
|
match A.view_as_bool t with
|
|
| B_bool _ | B_not _ -> None
|
|
| B_and l ->
|
|
let box_t = Box.box self.tst t in
|
|
let l = CCList.map recurse l in
|
|
let lit = PA.mk_lit box_t in
|
|
let subs = List.map PA.mk_lit l in
|
|
|
|
(* add clauses *)
|
|
List.iter
|
|
(fun u ->
|
|
let t_u = Lit.term u in
|
|
Stat.incr self.n_clauses;
|
|
PA.add_clause
|
|
[ Lit.neg lit; u ]
|
|
(mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "and-e" [ t; t_u ]))
|
|
subs;
|
|
|
|
Stat.incr self.n_clauses;
|
|
PA.add_clause
|
|
(lit :: List.map Lit.neg subs)
|
|
(mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "and-i" [ t ]);
|
|
Some box_t
|
|
| B_or l ->
|
|
let box_t = Box.box self.tst t in
|
|
let l = CCList.map recurse l in
|
|
let subs = List.map PA.mk_lit l in
|
|
let lit = PA.mk_lit box_t in
|
|
|
|
(* add clauses *)
|
|
List.iter
|
|
(fun u ->
|
|
let t_u = Lit.term u in
|
|
Stat.incr self.n_clauses;
|
|
PA.add_clause
|
|
[ Lit.neg u; lit ]
|
|
(mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "or-i" [ t; t_u ]))
|
|
subs;
|
|
|
|
Stat.incr self.n_clauses;
|
|
PA.add_clause (Lit.neg lit :: subs)
|
|
(mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "or-e" [ t ]);
|
|
Some box_t
|
|
| B_imply (a, b) ->
|
|
(* transform into [¬a \/ b] on the fly *)
|
|
let box_t = Box.box self.tst t in
|
|
let n_a = PA.mk_lit ~sign:false @@ recurse a in
|
|
let b = PA.mk_lit @@ recurse b in
|
|
let subs = [ n_a; b ] in
|
|
|
|
(* now the or-encoding *)
|
|
let lit = PA.mk_lit t in
|
|
|
|
(* add clauses *)
|
|
List.iter
|
|
(fun u ->
|
|
let t_u = Lit.term u in
|
|
Stat.incr self.n_clauses;
|
|
PA.add_clause
|
|
[ Lit.neg u; lit ]
|
|
(mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "imp-i" [ t; t_u ]))
|
|
subs;
|
|
|
|
Stat.incr self.n_clauses;
|
|
PA.add_clause (Lit.neg lit :: subs)
|
|
(mk_step_ @@ fun () -> Proof_rules.lemma_bool_c "imp-e" [ t ]);
|
|
|
|
Some box_t
|
|
| B_ite (a, b, c) ->
|
|
let box_t = Box.box self.tst t in
|
|
let a = recurse a in
|
|
let b = recurse b in
|
|
let c = recurse c in
|
|
|
|
let lit_a = PA.mk_lit a in
|
|
Stat.incr self.n_clauses;
|
|
PA.add_clause
|
|
[ Lit.neg lit_a; PA.mk_lit (eq self.tst box_t b) ]
|
|
(mk_step_ @@ fun () -> Proof_rules.lemma_ite_true ~ite:t);
|
|
|
|
Stat.incr self.n_clauses;
|
|
PA.add_clause
|
|
[ lit_a; PA.mk_lit (eq self.tst box_t c) ]
|
|
(mk_step_ @@ fun () -> Proof_rules.lemma_ite_false ~ite:t);
|
|
|
|
Some box_t
|
|
| B_eq _ | B_neq _ -> None
|
|
| B_equiv (a, b) ->
|
|
let box_t = Box.box self.tst t in
|
|
equiv_ self ~t ~box_t ~is_xor:false a b;
|
|
Some box_t
|
|
| B_xor (a, b) ->
|
|
let box_t = Box.box self.tst t in
|
|
equiv_ self ~t ~box_t ~is_xor:true a b;
|
|
Some box_t
|
|
| B_atom _ -> None
|
|
|
|
let create_and_setup ~id:_ si =
|
|
Log.debug 2 "(th-bool.setup)";
|
|
let st = create ~stat:(SI.stats si) (SI.tst si) in
|
|
SI.add_simplifier si (simplify st);
|
|
SI.on_preprocess si (cnf st);
|
|
st
|
|
|
|
let theory = SMT.Solver.mk_theory ~name:"th-bool.static" ~create_and_setup ()
|
|
end
|
|
|
|
let theory (module A : ARG) : SMT.theory =
|
|
let module M = Make (A) in
|
|
M.theory
|