sidekick/src/smt/Solver.ml
2018-05-23 22:24:24 -05:00

487 lines
15 KiB
OCaml

(* This file is free software. See file "license" for more details. *)
(** {1 Main Solver} *)
open Solver_types
let get_time : unit -> float = Sys.time
(** {2 The Main Solver} *)
type level = int
module Sat_solver = Sidekick_sat.Make(Theory_combine)
let[@inline] clause_of_mclause (c:Sat_solver.clause): Lit.t IArray.t =
Sat_solver.Clause.forms c
module Proof = struct
type t = Sat_solver.Proof.t
let check = Sat_solver.Proof.check
let pp out (p:t) : unit =
let pp_step_res out p =
let {Sat_solver.Proof.conclusion; _ } = Sat_solver.Proof.expand p in
Sat_solver.Clause.pp out conclusion
in
let pp_step out = function
| Sat_solver.Proof.Lemma _ -> Format.fprintf out "(@[<1>lemma@ ()@])"
| Sat_solver.Proof.Resolution (p1, p2, _) ->
Format.fprintf out "(@[<1>resolution@ %a@ %a@])"
pp_step_res p1 pp_step_res p2
| _ -> Fmt.string out "<other>"
in
Format.fprintf out "(@[<v>";
Sat_solver.Proof.fold
(fun () {Sat_solver.Proof.conclusion; step } ->
Format.fprintf out "(@[<hv1>step@ %a@ @[<1>from:@ %a@]@])@,"
Sat_solver.Clause.pp conclusion pp_step step)
() p;
Format.fprintf out "@])";
()
end
(* main solver state *)
type t = {
solver: Sat_solver.t;
stat: Stat.t;
config: Config.t
}
let[@inline] solver self = self.solver
let[@inline] th_combine (self:t) : Theory_combine.t = Sat_solver.theory self.solver
let[@inline] add_theory self th = Theory_combine.add_theory (th_combine self) th
let[@inline] cc self = Theory_combine.cc (th_combine self)
let stats self = self.stat
let[@inline] tst self = Theory_combine.tst (th_combine self)
let create ?size ?(config=Config.empty) ~theories () : t =
let self = {
solver=Sat_solver.create ?size ();
stat=Stat.create ();
config;
} in
(* now add the theories *)
Theory_combine.add_theory_l (th_combine self) theories;
self
(** {2 Sat Solver} *)
let print_progress (st:t) : unit =
Printf.printf "\r[%.2f] expanded %d | clauses %d | lemmas %d%!"
(get_time())
st.stat.Stat.num_cst_expanded
st.stat.Stat.num_clause_push
st.stat.Stat.num_clause_tautology
let flush_progress (): unit =
Printf.printf "\r%-80d\r%!" 0
(** {2 Toplevel Goals}
List of toplevel goals to satisfy. Mainly used for checking purpose
*)
module Top_goals: sig
val push : term -> unit
val to_seq : term Sequence.t
val check: unit -> unit
end = struct
(* list of terms to fully evaluate *)
let toplevel_goals_ : term list ref = ref []
(* add [t] to the set of terms that must be evaluated *)
let push (t:term): unit =
toplevel_goals_ := t :: !toplevel_goals_;
()
let to_seq k = List.iter k !toplevel_goals_
(* FIXME
(* check that this term fully evaluates to [true] *)
let is_true_ (t:term): bool = match CC.normal_form t with
| None -> false
| Some (NF_bool b) -> b
| Some (NF_cstor _) -> assert false (* not a bool *)
let check () =
if not (List.for_all is_true_ !toplevel_goals_)
then (
if Config.progress then flush_progress();
Log.debugf 1
(fun k->
let pp_lit out t =
let nf = CC.normal_form t in
Format.fprintf out "(@[term: %a@ nf: %a@])"
Term.pp t (Fmt.opt pp_term_nf) nf
in
k "(@[<hv1>Top_goals.check@ (@[<v>%a@])@])"
(Util.pp_list pp_lit) !toplevel_goals_);
assert false;
)
*)
let check () : unit = ()
end
(** {2 Conversion} *)
(* list of constants we are interested in *)
let model_support_ : Cst.t list ref = ref []
let model_env_ : Ast.env ref = ref Ast.env_empty
let add_cst_support_ (c:cst): unit =
CCList.Ref.push model_support_ c
let add_ty_support_ (_ty:Ty.t): unit = ()
(** {2 Result} *)
type unknown =
| U_timeout
| U_max_depth
| U_incomplete
let pp_unknown out = function
| U_timeout -> Fmt.string out "timeout"
| U_max_depth -> Fmt.string out "max depth reached"
| U_incomplete -> Fmt.string out "incomplete fragment"
type model = Model.t
let pp_model = Model.pp
type res =
| Sat of model
| Unsat of Proof.t
| Unknown of unknown
(* FIXME: repair this and output a nice model.
module Model_build : sig
val make: unit -> model
val check : model -> unit
end = struct
module ValueListMap = CCMap.Make(struct
type t = Term.t list (* normal forms *)
let compare = CCList.compare Term.compare
end)
type doms = {
dom_of_ty: ID.t list Ty.Tbl.t; (* uninterpreted type -> domain elements *)
dom_of_class: term Term.Tbl.t; (* representative -> normal form *)
dom_of_cst: term Cst.Tbl.t; (* cst -> its normal form *)
dom_of_fun: term ValueListMap.t Cst.Tbl.t; (* function -> args -> normal form *)
dom_traversed: unit Term.Tbl.t; (* avoid cycles *)
}
let create_doms() : doms =
{ dom_of_ty=Ty.Tbl.create 32;
dom_of_class = Term.Tbl.create 32;
dom_of_cst=Cst.Tbl.create 32;
dom_of_fun=Cst.Tbl.create 32;
dom_traversed=Term.Tbl.create 128;
}
(* pick a term belonging to this type.
we just generate a new constant, as picking true/a constructor might
refine the partial model into an unsatisfiable state. *)
let pick_default ~prefix (doms:doms)(ty:Ty.t) : term =
(* introduce a fresh constant for this equivalence class *)
let elts = Ty.Tbl.get_or ~default:[] doms.dom_of_ty ty in
let cst = ID.makef "%s%s_%d" prefix (Ty.mangle ty) (List.length elts) in
let nf = Term.const (Cst.make_undef cst ty) in
Ty.Tbl.replace doms.dom_of_ty ty (cst::elts);
nf
(* follow "normal form" pointers deeply in the term *)
let deref_deep (doms:doms) (t:term) : term =
let rec aux t =
let repr = (CC.find t :> term) in
(* if not already done, traverse all parents to update the functions'
models *)
if not (Term.Tbl.mem doms.dom_traversed repr) then (
Term.Tbl.add doms.dom_traversed repr ();
Bag.to_seq repr.term_parents |> Sequence.iter aux_ignore;
);
(* find a normal form *)
let nf: term =
begin match CC.normal_form t with
| Some (NF_bool true) -> Term.true_
| Some (NF_bool false) -> Term.false_
| Some (NF_cstor (cstor, args)) ->
(* cstor applied to sub-normal forms *)
Term.app_cst cstor.cstor_cst (IArray.map aux args)
| None ->
let repr = (CC.find t :> term) in
begin match Term.Tbl.get doms.dom_of_class repr with
| Some u -> u
| None when Ty.is_uninterpreted t.term_ty ->
let nf = pick_default ~prefix:"$" doms t.term_ty in
Term.Tbl.add doms.dom_of_class repr nf;
nf
| None ->
let nf = pick_default ~prefix:"?" doms t.term_ty in
Term.Tbl.add doms.dom_of_class repr nf;
nf
end
end
in
(* update other tables *)
begin match t.term_cell with
| True | False -> assert false (* should have normal forms *)
| Fun _ | DB _ | Mu _
-> ()
| Builtin b -> ignore (Term.map_builtin aux b)
| If (a,b,c) -> aux_ignore a; aux_ignore b; aux_ignore c
| App_ho (f, l) -> aux_ignore f; List.iter aux_ignore l
| Case (t, m) -> aux_ignore t; ID.Map.iter (fun _ rhs -> aux_ignore rhs) m
| App_cst (f, a) when IArray.is_empty a ->
(* remember [f := c] *)
Cst.Tbl.replace doms.dom_of_cst f nf
| App_cst (f, a) ->
(* remember [f a := c] *)
let a_values = IArray.map aux a |> IArray.to_list in
let map =
Cst.Tbl.get_or ~or_:ValueListMap.empty doms.dom_of_fun f
in
Cst.Tbl.replace doms.dom_of_fun f (ValueListMap.add a_values nf map)
end;
nf
and aux_ignore t =
ignore (aux t)
in
aux t
(* TODO: maybe we really need a notion of "Undefined" that is
also not a domain element (i.e. equality not defined on it)
+ some syntax for it *)
(* build the model of a function *)
let model_of_fun (doms:doms) (c:cst): Ast.term =
let ty_args, ty_ret = Ty.unfold (Cst.ty c) in
assert (ty_args <> []);
let vars =
List.mapi
(fun i ty -> Ast.Var.make (ID.makef "x_%d" i) (Conv.ty_to_ast ty))
ty_args
in
let default = match ty_ret.ty_cell with
| Prop -> Ast.true_ (* should be safe: we would have split it otherwise *)
| _ ->
(* TODO: what about other finites types? *)
pick_default ~prefix:"?" doms ty_ret |> Conv.term_to_ast
in
let cases =
Cst.Tbl.get_or ~or_:ValueListMap.empty doms.dom_of_fun c
|> ValueListMap.to_list
|> List.map
(fun (args,rhs) ->
assert (List.length ty_args = List.length vars);
let tests =
List.map2
(fun v arg -> Ast.eq (Ast.var v) (Conv.term_to_ast arg))
vars args
in
Ast.and_l tests, Conv.term_to_ast rhs)
in
(* decision tree for the body *)
let body =
List.fold_left
(fun else_ (test, then_) -> Ast.if_ test then_ else_)
default cases
in
Ast.fun_l vars body
let make () : model =
let env = !model_env_ in
let doms = create_doms () in
(* compute values of meta variables *)
let consts =
!model_support_
|> Sequence.of_list
|> Sequence.filter_map
(fun c ->
if Ty.is_arrow (Cst.ty c) then None
else
(* find normal form of [c] *)
let t = Term.const c in
let t = deref_deep doms t |> Conv.term_to_ast in
Some (c.cst_id, t))
|> ID.Map.of_seq
in
(* now compute functions (the previous "deref_deep" have updated their use cases) *)
let consts =
!model_support_
|> Sequence.of_list
|> Sequence.filter_map
(fun c ->
if Ty.is_arrow (Cst.ty c)
then (
let t = model_of_fun doms c in
Some (c.cst_id, t)
) else None)
|> ID.Map.add_seq consts
in
(* now we can convert domains *)
let domains =
Ty.Tbl.to_seq doms.dom_of_ty
|> Sequence.filter_map
(fun (ty,dom) ->
if Ty.is_uninterpreted ty
then Some (Conv.ty_to_ast ty, List.rev dom)
else None)
|> Ast.Ty.Map.of_seq
(* and update env: add every domain element to it *)
and env =
Ty.Tbl.to_seq doms.dom_of_ty
|> Sequence.flat_map_l (fun (_,dom) -> dom)
|> Sequence.fold
(fun env id -> Ast.env_add_def env id Ast.E_uninterpreted_cst)
env
in
Model.make ~env ~consts ~domains
let check m =
Log.debugf 1 (fun k->k "checking model…");
Log.debugf 5 (fun k->k "(@[<1>candidate model: %a@])" Model.pp m);
let goals =
Top_goals.to_seq
|> Sequence.map Conv.term_to_ast
|> Sequence.to_list
in
Model.check m ~goals
end
*)
(** {2 Main} *)
(* convert unsat-core *)
let clauses_of_unsat_core (core:Sat_solver.clause list): Lit.t IArray.t Sequence.t =
Sequence.of_list core
|> Sequence.map clause_of_mclause
(* print all terms reachable from watched literals *)
let pp_term_graph _out (_:t) =
()
let pp_stats out (s:t) : unit =
Format.fprintf out
"(@[<hv1>stats@ \
:num_expanded %d@ \
:num_uty_expanded %d@ \
:num_clause_push %d@ \
:num_clause_tautology %d@ \
:num_propagations %d@ \
:num_unif %d@ \
@])"
s.stat.Stat.num_cst_expanded
s.stat.Stat.num_uty_expanded
s.stat.Stat.num_clause_push
s.stat.Stat.num_clause_tautology
s.stat.Stat.num_propagations
s.stat.Stat.num_unif
let do_on_exit ~on_exit =
List.iter (fun f->f()) on_exit;
()
let assume (self:t) (c:Lit.t IArray.t) : unit =
let sat = solver self in
let c = Sat_solver.Clause.make (IArray.to_array_map (Sat_solver.Atom.make sat) c) in
Sat_solver.add_clause ~permanent:true sat c
let[@inline] assume_eq self t u expl : unit =
Congruence_closure.assert_eq (cc self) t u (E_lit expl)
let[@inline] assume_distinct self l ~neq expl : unit =
Congruence_closure.assert_distinct (cc self) l (E_lit expl) ~neq
let check_model (s:t) = Sat_solver.check_model s.solver
(*
type unsat_core = Sat.clause list
*)
(* TODO: main loop with iterative deepening of the unrolling limit
(not the value depth limit) *)
let solve ?on_exit:(_=[]) ?check:(_=true) ~assumptions (self:t) : res =
let r = Sat_solver.solve ~assumptions (solver self) () in
match r with
| Sat_solver.Sat (Sidekick_sat.Sat_state _st) ->
Log.debugf 0 (fun k->k "SAT");
Sat Model.empty
(*
let env = Ast.env_empty in
let m = Model.make ~env in
Unknown U_incomplete (* TODO *)
*)
| Sat_solver.Unsat (Sidekick_sat.Unsat_state us) ->
let pr = us.get_proof () in
Unsat pr
(* FIXME:
(* TODO: max_depth should actually correspond to the maximum depth
of un-expanded terms (expand in body of t --> depth = depth(t)+1),
so it corresponds to unfolding call graph to some depth *)
let solve ?(on_exit=[]) ?(check=true) () =
let n_iter = ref 0 in
let rec check_cc (): res =
assert (Backtrack.at_level_0 ());
if !n_iter > Config.max_depth then Unknown U_max_depth (* exceeded limit *)
else begin match CC.check () with
| CC.Unsat _ -> Unsat (* TODO proof *)
| CC.Sat lemmas ->
add_cc_lemmas lemmas;
check_solver()
end
and check_solver (): res =
(* assume all literals [expanded t] are false *)
let assumptions =
Terms_to_expand.to_seq
|> Sequence.map (fun {Terms_to_expand.lit; _} -> Lit.neg lit)
|> Sequence.to_rev_list
in
incr n_iter;
Log.debugf 2
(fun k->k
"(@[<1>@{<Yellow>solve@}@ @[:with-assumptions@ (@[%a@])@ n_iter: %d]@])"
(Util.pp_list Lit.pp) assumptions !n_iter);
begin match M.solve ~assumptions() with
| M.Sat _ ->
Log.debugf 1 (fun k->k "@{<Yellow>** found SAT@}");
do_on_exit ~on_exit;
let m = Model_build.make () in
if check then Model_build.check m;
Sat m
| M.Unsat us ->
let p = us.SI.get_proof () in
Log.debugf 4 (fun k->k "proof: @[%a@]@." pp_proof p);
let core = p |> M.unsat_core in
(* check if unsat because of assumptions *)
expand_next core
end
(* pick a term to expand, or UNSAT *)
and expand_next (core:unsat_core) =
begin match find_to_expand core with
| None -> Unsat (* TODO proof *)
| Some to_expand ->
let t = to_expand.Terms_to_expand.term in
Log.debugf 2 (fun k->k "(@[<1>@{<green>expand_next@}@ :term %a@])" Term.pp t);
CC.expand_term t;
Terms_to_expand.remove t;
Clause.push_new (Clause.make [to_expand.Terms_to_expand.lit]);
Backtrack.backtrack_to_level_0 ();
check_cc () (* recurse *)
end
in
check_cc()
*)