mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-07 11:45:41 -05:00
800 lines
26 KiB
OCaml
800 lines
26 KiB
OCaml
|
||
(** {1 Linear Rational Arithmetic} *)
|
||
|
||
(* Reference:
|
||
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_LRA *)
|
||
|
||
open Sidekick_core
|
||
|
||
module Predicate = Sidekick_simplex.Predicate
|
||
module Linear_expr = Sidekick_simplex.Linear_expr
|
||
module Linear_expr_intf = Sidekick_simplex.Linear_expr_intf
|
||
|
||
module type INT = Sidekick_arith.INT
|
||
module type RATIONAL = Sidekick_arith.RATIONAL
|
||
|
||
module S_op = Sidekick_simplex.Op
|
||
|
||
type pred = Linear_expr_intf.bool_op = Leq | Geq | Lt | Gt | Eq | Neq
|
||
type op = Linear_expr_intf.op = Plus | Minus
|
||
|
||
type ('num, 'a) lra_view =
|
||
| LRA_pred of pred * 'a * 'a
|
||
| LRA_op of op * 'a * 'a
|
||
| LRA_mult of 'num * 'a
|
||
| LRA_const of 'num
|
||
| LRA_other of 'a
|
||
|
||
let map_view f (l:_ lra_view) : _ lra_view =
|
||
begin match l with
|
||
| LRA_pred (p, a, b) -> LRA_pred (p, f a, f b)
|
||
| LRA_op (p, a, b) -> LRA_op (p, f a, f b)
|
||
| LRA_mult (n,a) -> LRA_mult (n, f a)
|
||
| LRA_const q -> LRA_const q
|
||
| LRA_other x -> LRA_other (f x)
|
||
end
|
||
|
||
module type ARG = sig
|
||
module S : Sidekick_core.SOLVER
|
||
module Z : INT
|
||
module Q : RATIONAL with type bigint = Z.t
|
||
|
||
type term = S.T.Term.t
|
||
type ty = S.T.Ty.t
|
||
|
||
val view_as_lra : term -> (Q.t, term) lra_view
|
||
(** Project the term into the theory view *)
|
||
|
||
val mk_bool : S.T.Term.store -> bool -> term
|
||
|
||
val mk_lra : S.T.Term.store -> (Q.t, term) lra_view -> term
|
||
(** Make a term from the given theory view *)
|
||
|
||
val ty_lra : S.T.Term.store -> ty
|
||
|
||
val mk_eq : S.T.Term.store -> term -> term -> term
|
||
(** syntactic equality *)
|
||
|
||
val has_ty_real : term -> bool
|
||
(** Does this term have the type [Real] *)
|
||
|
||
val lemma_lra : S.Lit.t Iter.t -> S.P.proof_rule
|
||
|
||
module Gensym : sig
|
||
type t
|
||
|
||
val create : S.T.Term.store -> t
|
||
|
||
val tst : t -> S.T.Term.store
|
||
|
||
val copy : t -> t
|
||
|
||
val fresh_term : t -> pre:string -> S.T.Ty.t -> term
|
||
(** Make a fresh term of the given type *)
|
||
end
|
||
end
|
||
|
||
module type S = sig
|
||
module A : ARG
|
||
|
||
(*
|
||
module SimpVar : Sidekick_simplex.VAR with type lit = A.S.Lit.t
|
||
module LE_ : Linear_expr_intf.S with module Var = SimpVar
|
||
module LE = LE_.Expr
|
||
*)
|
||
|
||
(** Simplexe *)
|
||
module SimpSolver : Sidekick_simplex.S
|
||
|
||
type state
|
||
|
||
val create : ?stat:Stat.t ->
|
||
A.S.Solver_internal.t ->
|
||
state
|
||
|
||
(* TODO: be able to declare some variables as ints *)
|
||
|
||
(*
|
||
val simplex : state -> Simplex.t
|
||
*)
|
||
|
||
val k_state : state A.S.Solver_internal.Registry.key
|
||
(** Key to access the state from outside,
|
||
available when the theory has been setup *)
|
||
|
||
val theory : A.S.theory
|
||
end
|
||
|
||
module Make(A : ARG) : S with module A = A = struct
|
||
module A = A
|
||
module Ty = A.S.T.Ty
|
||
module T = A.S.T.Term
|
||
module Lit = A.S.Solver_internal.Lit
|
||
module SI = A.S.Solver_internal
|
||
module N = A.S.Solver_internal.CC.N
|
||
|
||
module Tag = struct
|
||
type t =
|
||
| Lit of Lit.t
|
||
| CC_eq of N.t * N.t
|
||
|
||
let pp out = function
|
||
| Lit l -> Fmt.fprintf out "(@[lit %a@])" Lit.pp l
|
||
| CC_eq (n1,n2) -> Fmt.fprintf out "(@[cc-eq@ %a@ %a@])" N.pp n1 N.pp n2
|
||
|
||
let to_lits si = function
|
||
| Lit l -> [l]
|
||
| CC_eq (n1,n2) ->
|
||
let r = SI.CC.explain_eq (SI.cc si) n1 n2 in
|
||
assert (not (SI.CC.Resolved_expl.is_semantic r));
|
||
r.lits
|
||
end
|
||
|
||
module SimpVar
|
||
: Linear_expr.VAR
|
||
with type t = A.term
|
||
and type lit = Tag.t
|
||
= struct
|
||
type t = A.term
|
||
let pp = A.S.T.Term.pp
|
||
let compare = A.S.T.Term.compare
|
||
type lit = Tag.t
|
||
let pp_lit = Tag.pp
|
||
let not_lit = function
|
||
| Tag.Lit l -> Some (Tag.Lit (Lit.neg l))
|
||
| _ -> None
|
||
end
|
||
|
||
module LE_ = Linear_expr.Make(A.Q)(SimpVar)
|
||
module LE = LE_.Expr
|
||
module SimpSolver = Sidekick_simplex.Make(struct
|
||
module Z = A.Z
|
||
module Q = A.Q
|
||
module Var = SimpVar
|
||
let mk_lit _ _ _ = assert false
|
||
end)
|
||
module Subst = SimpSolver.Subst
|
||
|
||
module Comb_map = CCMap.Make(LE_.Comb)
|
||
|
||
(* turn the term into a linear expression. Apply [f] on leaves. *)
|
||
let rec as_linexp (t:T.t) : LE.t =
|
||
let open LE.Infix in
|
||
match A.view_as_lra t with
|
||
| LRA_other _ -> LE.monomial1 t
|
||
| LRA_pred _ ->
|
||
Error.errorf "type error: in linexp, LRA predicate %a" T.pp t
|
||
| LRA_op (op, t1, t2) ->
|
||
let t1 = as_linexp t1 in
|
||
let t2 = as_linexp t2 in
|
||
begin match op with
|
||
| Plus -> t1 + t2
|
||
| Minus -> t1 - t2
|
||
end
|
||
| LRA_mult (n, x) ->
|
||
let t = as_linexp x in
|
||
LE.( n * t )
|
||
| LRA_const q -> LE.of_const q
|
||
|
||
(* monoid to track linear expressions in congruence classes, to clash on merge *)
|
||
module Monoid_exprs = struct
|
||
module SI = SI
|
||
let name = "lra.const"
|
||
type single = {
|
||
le: LE.t;
|
||
n: N.t;
|
||
}
|
||
type t = single list
|
||
|
||
let pp_single out {le=_;n} = N.pp out n
|
||
|
||
let pp out self =
|
||
match self with
|
||
| [] -> ()
|
||
| [x] -> pp_single out x
|
||
| _ -> Fmt.fprintf out "(@[exprs@ %a@])" (Util.pp_list pp_single) self
|
||
|
||
let of_term _cc n t = match A.view_as_lra t with
|
||
| LRA_const _ | LRA_op _ | LRA_mult _ ->
|
||
let le = as_linexp t in
|
||
Some [{n; le}], []
|
||
| LRA_other _ | LRA_pred _ ->
|
||
None, []
|
||
|
||
exception Confl of SI.CC.Expl.t
|
||
|
||
(* merge lists. If two linear expressions equal up to a constant are
|
||
merged, conflict. *)
|
||
let merge _cc n1 l1 n2 l2 expl_12 : _ result =
|
||
try
|
||
let i = Iter.(product (of_list l1) (of_list l2)) in
|
||
i (fun (s1,s2) ->
|
||
let le = LE.(s1.le - s2.le) in
|
||
if LE.is_const le && not (LE.is_zero le) then (
|
||
(* conflict: [le+c = le + d] is impossible *)
|
||
let expl =
|
||
let open SI.CC.Expl in
|
||
mk_list
|
||
[mk_merge s1.n n1; mk_merge s2.n n2; expl_12] in
|
||
raise (Confl expl)
|
||
));
|
||
Ok (List.rev_append l1 l2)
|
||
with
|
||
Confl expl -> Error expl
|
||
end
|
||
|
||
module ST_exprs = Sidekick_core.Monoid_of_repr(Monoid_exprs)
|
||
|
||
type state = {
|
||
tst: T.store;
|
||
ty_st: Ty.store;
|
||
proof: SI.P.t;
|
||
gensym: A.Gensym.t;
|
||
in_model: unit T.Tbl.t; (* terms to add to model *)
|
||
encoded_eqs: unit T.Tbl.t; (* [a=b] gets clause [a = b <=> (a >= b /\ a <= b)] *)
|
||
needs_th_combination: unit T.Tbl.t; (* terms that require theory combination *)
|
||
simp_preds: (T.t * S_op.t * A.Q.t) T.Tbl.t; (* term -> its simplex meaning *)
|
||
simp_defined: LE.t T.Tbl.t; (* (rational) terms that are equal to a linexp *)
|
||
st_exprs : ST_exprs.t;
|
||
mutable encoded_le: T.t Comb_map.t; (* [le] -> var encoding [le] *)
|
||
simplex: SimpSolver.t;
|
||
mutable last_res: SimpSolver.result option;
|
||
}
|
||
|
||
let create ?(stat=Stat.create()) (si:SI.t) : state =
|
||
let proof = SI.proof si in
|
||
let tst = SI.tst si in
|
||
let ty_st = SI.ty_st si in
|
||
{ tst; ty_st;
|
||
proof;
|
||
in_model=T.Tbl.create 8;
|
||
st_exprs=ST_exprs.create_and_setup si;
|
||
gensym=A.Gensym.create tst;
|
||
simp_preds=T.Tbl.create 32;
|
||
simp_defined=T.Tbl.create 16;
|
||
encoded_eqs=T.Tbl.create 8;
|
||
needs_th_combination=T.Tbl.create 8;
|
||
encoded_le=Comb_map.empty;
|
||
simplex=SimpSolver.create ~stat ();
|
||
last_res=None;
|
||
}
|
||
|
||
let[@inline] reset_res_ (self:state) : unit =
|
||
self.last_res <- None
|
||
|
||
let[@inline] n_levels self : int = ST_exprs.n_levels self.st_exprs
|
||
let push_level self =
|
||
ST_exprs.push_level self.st_exprs;
|
||
SimpSolver.push_level self.simplex;
|
||
()
|
||
|
||
let pop_levels self n =
|
||
reset_res_ self;
|
||
ST_exprs.pop_levels self.st_exprs n;
|
||
SimpSolver.pop_levels self.simplex n;
|
||
()
|
||
|
||
let fresh_term self ~pre ty = A.Gensym.fresh_term self.gensym ~pre ty
|
||
let fresh_lit (self:state) ~mk_lit ~pre : Lit.t =
|
||
let t = fresh_term ~pre self (Ty.bool self.ty_st) in
|
||
mk_lit t
|
||
|
||
let pp_pred_def out (p,l1,l2) : unit =
|
||
Fmt.fprintf out "(@[%a@ :l1 %a@ :l2 %a@])" Predicate.pp p LE.pp l1 LE.pp l2
|
||
|
||
let[@inline] t_const self n : T.t = A.mk_lra self.tst (LRA_const n)
|
||
let[@inline] t_zero self : T.t = t_const self A.Q.zero
|
||
|
||
let[@inline] is_const_ t = match A.view_as_lra t with LRA_const _ -> true | _ -> false
|
||
let[@inline] as_const_ t = match A.view_as_lra t with LRA_const n -> Some n | _ -> None
|
||
let[@inline] is_zero t = match A.view_as_lra t with LRA_const n -> A.Q.(n = zero) | _ -> false
|
||
|
||
let t_of_comb (self:state) (comb:LE_.Comb.t) ~(init:T.t) : T.t =
|
||
let[@inline] (+) a b = A.mk_lra self.tst (LRA_op (Plus, a, b)) in
|
||
let[@inline] ( * ) a b = A.mk_lra self.tst (LRA_mult (a, b)) in
|
||
|
||
let cur = ref init in
|
||
LE_.Comb.iter
|
||
(fun t c ->
|
||
let tc = if A.Q.(c = of_int 1) then t else c * t in
|
||
cur := if is_zero !cur then tc else !cur + tc
|
||
)
|
||
comb;
|
||
!cur
|
||
|
||
(* encode back into a term *)
|
||
let t_of_linexp (self:state) (le:LE.t) : T.t =
|
||
let comb = LE.comb le in
|
||
let const = LE.const le in
|
||
t_of_comb self comb ~init:(A.mk_lra self.tst (LRA_const const))
|
||
|
||
(* return a variable that is equal to [le_comb] in the simplex. *)
|
||
let var_encoding_comb ~pre self (le_comb:LE_.Comb.t) : T.t =
|
||
assert (not (LE_.Comb.is_empty le_comb));
|
||
match LE_.Comb.as_singleton le_comb with
|
||
| Some (c, x) when A.Q.(c = one) -> x (* trivial linexp *)
|
||
| _ ->
|
||
match Comb_map.find le_comb self.encoded_le with
|
||
| x -> x (* already encoded that *)
|
||
| exception Not_found ->
|
||
(* new variable to represent [le_comb] *)
|
||
let proxy = fresh_term self ~pre (A.ty_lra self.tst) in
|
||
(* TODO: define proxy *)
|
||
self.encoded_le <- Comb_map.add le_comb proxy self.encoded_le;
|
||
Log.debugf 50
|
||
(fun k->k "(@[lra.encode-linexp@ `@[%a@]`@ :into-var %a@])" LE_.Comb.pp le_comb T.pp proxy);
|
||
|
||
LE_.Comb.iter (fun v _ -> SimpSolver.add_var self.simplex v) le_comb;
|
||
SimpSolver.define self.simplex proxy (LE_.Comb.to_list le_comb);
|
||
proxy
|
||
|
||
let add_clause_lra_ ?using (module PA:SI.PREPROCESS_ACTS) lits =
|
||
let pr = A.lemma_lra (Iter.of_list lits) PA.proof in
|
||
let pr = match using with
|
||
| None -> pr
|
||
| Some using -> SI.P.lemma_rw_clause pr ~res:(Iter.of_list lits) ~using PA.proof in
|
||
PA.add_clause lits pr
|
||
|
||
let s_op_of_pred pred : S_op.t =
|
||
match pred with
|
||
| Eq | Neq -> assert false (* unreachable *)
|
||
| Leq -> S_op.Leq
|
||
| Lt -> S_op.Lt
|
||
| Geq -> S_op.Geq
|
||
| Gt -> S_op.Gt
|
||
|
||
(* TODO: refactor that and {!var_encoding_comb} *)
|
||
(* turn a linear expression into a single constant and a coeff.
|
||
This might define a side variable in the simplex. *)
|
||
let le_comb_to_singleton_ (self:state) (le_comb:LE_.Comb.t) : T.t * A.Q.t =
|
||
begin match LE_.Comb.as_singleton le_comb with
|
||
| Some (coeff, v) -> v, coeff
|
||
|
||
| None ->
|
||
(* non trivial linexp, give it a fresh name in the simplex *)
|
||
match Comb_map.get le_comb self.encoded_le with
|
||
| Some x -> x, A.Q.one (* already encoded that *)
|
||
| None ->
|
||
|
||
let proxy = fresh_term self ~pre:"_le_comb" (A.ty_lra self.tst) in
|
||
|
||
self.encoded_le <- Comb_map.add le_comb proxy self.encoded_le;
|
||
LE_.Comb.iter (fun v _ -> SimpSolver.add_var self.simplex v) le_comb;
|
||
SimpSolver.define self.simplex proxy (LE_.Comb.to_list le_comb);
|
||
|
||
Log.debugf 50
|
||
(fun k->k "(@[lra.encode-linexp.to-term@ `@[%a@]`@ :new-t %a@])"
|
||
LE_.Comb.pp le_comb T.pp proxy);
|
||
|
||
proxy, A.Q.one
|
||
end
|
||
|
||
(* look for subterms of type Real, for they will need theory combination *)
|
||
let on_subterm (self:state) _ (t:T.t) : unit =
|
||
Log.debugf 50 (fun k->k "(@[lra.cc-on-subterm@ %a@])" T.pp t);
|
||
match A.view_as_lra t with
|
||
| LRA_other _ when not (A.has_ty_real t) -> ()
|
||
| LRA_pred _ | LRA_const _ -> ()
|
||
| LRA_op _ | LRA_other _ | LRA_mult _ ->
|
||
if not (T.Tbl.mem self.needs_th_combination t) then (
|
||
Log.debugf 5 (fun k->k "(@[lra.needs-th-combination@ %a@])" T.pp t);
|
||
T.Tbl.add self.needs_th_combination t ();
|
||
)
|
||
|
||
(* preprocess linear expressions away *)
|
||
let preproc_lra (self:state) si
|
||
(module PA:SI.PREPROCESS_ACTS) (t:T.t) : unit =
|
||
Log.debugf 50 (fun k->k "(@[lra.preprocess@ %a@])" T.pp t);
|
||
let tst = SI.tst si in
|
||
|
||
(* tell the CC this term exists *)
|
||
let declare_term_to_cc ~sub t =
|
||
Log.debugf 50 (fun k->k "(@[lra.declare-term-to-cc@ %a@])" T.pp t);
|
||
ignore (SI.CC.add_term (SI.cc si) t : SI.CC.N.t);
|
||
if sub then on_subterm self () t;
|
||
in
|
||
|
||
match A.view_as_lra t with
|
||
| _ when T.Tbl.mem self.simp_preds t ->
|
||
() (* already turned into a simplex predicate *)
|
||
|
||
| LRA_pred ((Eq | Neq) as pred, t1, t2) when is_const_ t1 && is_const_ t2 ->
|
||
(* comparison of constants: can decide right now *)
|
||
begin match A.view_as_lra t1, A.view_as_lra t2 with
|
||
| LRA_const n1, LRA_const n2 ->
|
||
let is_eq = pred = Eq in
|
||
let t_is_true = is_eq = (A.Q.equal n1 n2) in
|
||
let lit = PA.mk_lit ~sign:t_is_true t in
|
||
add_clause_lra_ (module PA) [lit]
|
||
| _ -> assert false
|
||
end
|
||
|
||
| LRA_pred ((Eq | Neq), t1, t2) ->
|
||
(* equality: just punt to [t1 = t2 <=> (t1 <= t2 /\ t1 >= t2)] *)
|
||
let t, _ = T.abs tst t in
|
||
if not (T.Tbl.mem self.encoded_eqs t) then (
|
||
let u1 = A.mk_lra tst (LRA_pred (Leq, t1, t2)) in
|
||
let u2 = A.mk_lra tst (LRA_pred (Geq, t1, t2)) in
|
||
|
||
T.Tbl.add self.encoded_eqs t ();
|
||
|
||
(* encode [t <=> (u1 /\ u2)] *)
|
||
let lit_t = PA.mk_lit t in
|
||
let lit_u1 = PA.mk_lit u1 in
|
||
let lit_u2 = PA.mk_lit u2 in
|
||
add_clause_lra_ (module PA) [SI.Lit.neg lit_t; lit_u1];
|
||
add_clause_lra_ (module PA) [SI.Lit.neg lit_t; lit_u2];
|
||
add_clause_lra_ (module PA)
|
||
[SI.Lit.neg lit_u1; SI.Lit.neg lit_u2; lit_t];
|
||
);
|
||
|
||
| LRA_pred (pred, t1, t2) ->
|
||
let l1 = as_linexp t1 in
|
||
let l2 = as_linexp t2 in
|
||
let le = LE.(l1 - l2) in
|
||
let le_comb, le_const = LE.comb le, LE.const le in
|
||
let le_const = A.Q.neg le_const in
|
||
let op = s_op_of_pred pred in
|
||
(* now we have [le_comb op le_const] *)
|
||
|
||
(* obtain a single variable for the linear combination *)
|
||
let v, c_v = le_comb_to_singleton_ self le_comb in
|
||
declare_term_to_cc ~sub:false v;
|
||
LE_.Comb.iter (fun v _ -> declare_term_to_cc ~sub:true v) le_comb;
|
||
|
||
(* turn into simplex constraint. For example,
|
||
[c . v <= const] becomes a direct simplex constraint [v <= const/c]
|
||
(beware the sign) *)
|
||
|
||
(* make sure to swap sides if multiplying with a negative coeff *)
|
||
let q = A.Q.( le_const / c_v ) in
|
||
let op = if A.Q.(c_v < zero) then S_op.neg_sign op else op in
|
||
|
||
let lit = PA.mk_lit t in
|
||
let constr = SimpSolver.Constraint.mk v op q in
|
||
SimpSolver.declare_bound self.simplex constr (Tag.Lit lit);
|
||
T.Tbl.add self.simp_preds t (v, op, q);
|
||
|
||
Log.debugf 50 (fun k->k "(@[lra.preproc@ :t %a@ :to-constr %a@])"
|
||
T.pp t SimpSolver.Constraint.pp constr);
|
||
|
||
| LRA_op _ | LRA_mult _ ->
|
||
if not (T.Tbl.mem self.simp_defined t) then (
|
||
(* we define these terms so their value in the model make sense *)
|
||
let le = as_linexp t in
|
||
T.Tbl.add self.simp_defined t le;
|
||
);
|
||
|
||
| LRA_const _n -> ()
|
||
|
||
| LRA_other t when A.has_ty_real t -> ()
|
||
| LRA_other _ ->
|
||
()
|
||
|
||
let simplify (self:state) (_recurse:_) (t:T.t) : (T.t * SI.proof_step Iter.t) option =
|
||
let proof_eq t u =
|
||
A.lemma_lra
|
||
(Iter.return (SI.Lit.atom self.tst (A.mk_eq self.tst t u))) self.proof
|
||
in
|
||
let proof_bool t ~sign:b =
|
||
let lit = SI.Lit.atom ~sign:b self.tst t in
|
||
A.lemma_lra (Iter.return lit) self.proof
|
||
in
|
||
|
||
match A.view_as_lra t with
|
||
| LRA_op _ | LRA_mult _ ->
|
||
let le = as_linexp t in
|
||
if LE.is_const le then (
|
||
let c = LE.const le in
|
||
let u = A.mk_lra self.tst (LRA_const c) in
|
||
let pr = proof_eq t u in
|
||
Some (u, Iter.return pr)
|
||
) else (
|
||
let u = t_of_linexp self le in
|
||
if t != u then (
|
||
let pr = proof_eq t u in
|
||
Some (u, Iter.return pr)
|
||
) else None
|
||
)
|
||
|
||
| LRA_pred ((Eq | Neq), _, _) ->
|
||
(* never change equalities, it can affect theory combination *)
|
||
None
|
||
|
||
| LRA_pred (pred, l1, l2) ->
|
||
let le = LE.(as_linexp l1 - as_linexp l2) in
|
||
|
||
if LE.is_const le then (
|
||
let c = LE.const le in
|
||
let is_true = match pred with
|
||
| Leq -> A.Q.(c <= zero)
|
||
| Geq -> A.Q.(c >= zero)
|
||
| Lt -> A.Q.(c < zero)
|
||
| Gt -> A.Q.(c > zero)
|
||
| Eq -> A.Q.(c = zero)
|
||
| Neq -> A.Q.(c <> zero)
|
||
in
|
||
let u = A.mk_bool self.tst is_true in
|
||
let pr = proof_bool t ~sign:is_true in
|
||
Some (u, Iter.return pr)
|
||
|
||
) else (
|
||
(* le <= const *)
|
||
let u = A.mk_lra self.tst
|
||
(LRA_pred (pred, t_of_comb self (LE.comb le) ~init:(t_zero self),
|
||
t_const self (A.Q.neg @@ LE.const le))) in
|
||
|
||
if t != u then (
|
||
let pr = proof_eq t u in
|
||
Some (u, Iter.return pr)
|
||
) else None
|
||
)
|
||
| _ -> None
|
||
|
||
(* raise conflict from certificate *)
|
||
let fail_with_cert si acts cert : 'a =
|
||
Profile.with1 "lra.simplex.check-cert" SimpSolver._check_cert cert;
|
||
let confl =
|
||
SimpSolver.Unsat_cert.lits cert
|
||
|> CCList.flat_map (Tag.to_lits si)
|
||
|> List.rev_map SI.Lit.neg
|
||
in
|
||
let pr = A.lemma_lra (Iter.of_list confl) (SI.proof si) in
|
||
SI.raise_conflict si acts confl pr
|
||
|
||
let on_propagate_ si acts lit ~reason =
|
||
match lit with
|
||
| Tag.Lit lit ->
|
||
(* TODO: more detailed proof certificate *)
|
||
SI.propagate si acts lit
|
||
~reason:(fun() ->
|
||
let lits = CCList.flat_map (Tag.to_lits si) reason in
|
||
let pr = A.lemma_lra Iter.(cons lit (of_list lits)) (SI.proof si) in
|
||
CCList.flat_map (Tag.to_lits si) reason, pr)
|
||
| _ -> ()
|
||
|
||
(** Check satisfiability of simplex, and sets [self.last_res] *)
|
||
let check_simplex_ self si acts : SimpSolver.Subst.t =
|
||
Log.debugf 5
|
||
(fun k->k "(@[lra.check-simplex@ :n-vars %d :n-rows %d@])"
|
||
(SimpSolver.n_vars self.simplex) (SimpSolver.n_rows self.simplex));
|
||
let res =
|
||
Profile.with_ "lra.simplex.solve" @@ fun () ->
|
||
SimpSolver.check self.simplex
|
||
~on_propagate:(on_propagate_ si acts)
|
||
in
|
||
Log.debug 5 "(lra.check-simplex.done)";
|
||
self.last_res <- Some res;
|
||
begin match res with
|
||
| SimpSolver.Sat m -> m
|
||
| SimpSolver.Unsat cert ->
|
||
Log.debugf 10
|
||
(fun k->k "(@[lra.check.unsat@ :cert %a@])"
|
||
SimpSolver.Unsat_cert.pp cert);
|
||
fail_with_cert si acts cert
|
||
end
|
||
|
||
(* TODO: trivial propagations *)
|
||
|
||
let add_local_eq_t (self:state) si acts t1 t2 ~tag : unit =
|
||
Log.debugf 20 (fun k->k "(@[lra.add-local-eq@ %a@ %a@])" T.pp t1 T.pp t2);
|
||
reset_res_ self;
|
||
let t1, t2 = if T.compare t1 t2 > 0 then t2, t1 else t1, t2 in
|
||
|
||
let le = LE.(as_linexp t1 - as_linexp t2) in
|
||
let le_comb, le_const = LE.comb le, LE.const le in
|
||
let le_const = A.Q.neg le_const in
|
||
|
||
if LE_.Comb.is_empty le_comb then (
|
||
if A.Q.(le_const <> zero) then (
|
||
(* [c=0] when [c] is not 0 *)
|
||
let lit = SI.Lit.neg @@ SI.mk_lit si acts @@ A.mk_eq self.tst t1 t2 in
|
||
let pr = A.lemma_lra (Iter.return lit) self.proof in
|
||
SI.add_clause_permanent si acts [lit] pr
|
||
)
|
||
) else (
|
||
|
||
let v = var_encoding_comb ~pre:"le_local_eq" self le_comb in
|
||
begin
|
||
try
|
||
let c1 = SimpSolver.Constraint.geq v le_const in
|
||
SimpSolver.add_constraint self.simplex c1 tag
|
||
~on_propagate:(on_propagate_ si acts);
|
||
let c2 = SimpSolver.Constraint.leq v le_const in
|
||
SimpSolver.add_constraint self.simplex c2 tag
|
||
~on_propagate:(on_propagate_ si acts);
|
||
with SimpSolver.E_unsat cert ->
|
||
fail_with_cert si acts cert
|
||
end;
|
||
)
|
||
|
||
let add_local_eq (self:state) si acts n1 n2 : unit =
|
||
let t1 = N.term n1 in
|
||
let t2 = N.term n2 in
|
||
add_local_eq_t self si acts t1 t2 ~tag:(Tag.CC_eq (n1, n2))
|
||
|
||
(* evaluate a term directly, as a variable *)
|
||
let eval_in_subst_ subst t = match A.view_as_lra t with
|
||
| LRA_const n -> n
|
||
| _ -> Subst.eval subst t |> Option.value ~default:A.Q.zero
|
||
|
||
(* evaluate a linear expression *)
|
||
let eval_le_in_subst_ subst (le:LE.t) =
|
||
LE.eval (eval_in_subst_ subst) le
|
||
|
||
(* FIXME: rename, this is more "provide_model_to_cc" *)
|
||
let do_th_combination (self:state) _si _acts : _ Iter.t =
|
||
Log.debug 1 "(lra.do-th-combinations)";
|
||
let model = match self.last_res with
|
||
| Some (SimpSolver.Sat m) -> m
|
||
| _ -> assert false
|
||
in
|
||
|
||
let vals =
|
||
Subst.to_iter model |> T.Tbl.of_iter
|
||
in
|
||
|
||
(* also include terms that occur under function symbols, if they're
|
||
not in the model already *)
|
||
T.Tbl.iter
|
||
(fun t () ->
|
||
if not (T.Tbl.mem vals t) then (
|
||
let v = eval_in_subst_ model t in
|
||
T.Tbl.add vals t v;
|
||
))
|
||
self.needs_th_combination;
|
||
|
||
(* also consider subterms that are linear expressions,
|
||
and evaluate them using the value of each variable
|
||
in that linear expression. For example a term [a + 2b]
|
||
is evaluated as [eval(a) + 2 × eval(b)]. *)
|
||
T.Tbl.iter
|
||
(fun t le ->
|
||
if not (T.Tbl.mem vals t) then (
|
||
let v = eval_le_in_subst_ model le in
|
||
T.Tbl.add vals t v
|
||
))
|
||
self.simp_defined;
|
||
|
||
(* return whole model *)
|
||
begin
|
||
T.Tbl.to_iter vals
|
||
|> Iter.map (fun (t,v) -> t, t_const self v)
|
||
end
|
||
|
||
(* partial checks is where we add literals from the trail to the
|
||
simplex. *)
|
||
let partial_check_ self si acts trail : unit =
|
||
Profile.with_ "lra.partial-check" @@ fun () ->
|
||
|
||
reset_res_ self;
|
||
let changed = ref false in
|
||
|
||
let examine_lit lit =
|
||
let sign = SI.Lit.sign lit in
|
||
let lit_t = SI.Lit.term lit in
|
||
match T.Tbl.get self.simp_preds lit_t, A.view_as_lra lit_t with
|
||
| Some (v,op,q), _ ->
|
||
|
||
Log.debugf 50
|
||
(fun k->k "(@[lra.partial-check.add@ :lit %a@ :lit-t %a@])"
|
||
SI.Lit.pp lit T.pp lit_t);
|
||
|
||
(* need to account for the literal's sign *)
|
||
let op = if sign then op else S_op.not_ op in
|
||
|
||
(* assert new constraint to Simplex *)
|
||
let constr = SimpSolver.Constraint.mk v op q in
|
||
Log.debugf 10
|
||
(fun k->k "(@[lra.partial-check.assert@ %a@])"
|
||
SimpSolver.Constraint.pp constr);
|
||
begin
|
||
changed := true;
|
||
try
|
||
SimpSolver.add_var self.simplex v;
|
||
SimpSolver.add_constraint self.simplex constr (Tag.Lit lit)
|
||
~on_propagate:(on_propagate_ si acts);
|
||
with SimpSolver.E_unsat cert ->
|
||
Log.debugf 10
|
||
(fun k->k "(@[lra.partial-check.unsat@ :cert %a@])"
|
||
SimpSolver.Unsat_cert.pp cert);
|
||
fail_with_cert si acts cert
|
||
end
|
||
|
||
| None, LRA_pred (Eq, t1, t2) when sign ->
|
||
add_local_eq_t self si acts t1 t2 ~tag:(Tag.Lit lit);
|
||
|
||
| None, LRA_pred (Neq, t1, t2) when not sign ->
|
||
add_local_eq_t self si acts t1 t2 ~tag:(Tag.Lit lit);
|
||
|
||
| None, _ -> ()
|
||
in
|
||
|
||
Iter.iter examine_lit trail;
|
||
|
||
(* incremental check *)
|
||
if !changed then (
|
||
ignore (check_simplex_ self si acts : SimpSolver.Subst.t);
|
||
);
|
||
()
|
||
|
||
let final_check_ (self:state) si (acts:SI.theory_actions) (_trail:_ Iter.t) : unit =
|
||
Log.debug 5 "(th-lra.final-check)";
|
||
Profile.with_ "lra.final-check" @@ fun () ->
|
||
reset_res_ self;
|
||
|
||
(* add equalities between linear-expressions merged in the congruence closure *)
|
||
ST_exprs.iter_all self.st_exprs
|
||
(fun (_,l) ->
|
||
Iter.diagonal_l l
|
||
(fun (s1, s2) ->
|
||
add_local_eq self si acts s1.n s2.n));
|
||
|
||
(* TODO: jiggle model to reduce the number of variables that
|
||
have the same value *)
|
||
let model = check_simplex_ self si acts in
|
||
Log.debugf 20 (fun k->k "(@[lra.model@ %a@])" SimpSolver.Subst.pp model);
|
||
Log.debug 5 "(lra: solver returns SAT)";
|
||
()
|
||
|
||
(* help generating model *)
|
||
let model_ask_ (self:state) ~recurse:_ _si n : _ option =
|
||
let t = N.term n in
|
||
begin match self.last_res with
|
||
| Some (SimpSolver.Sat m) ->
|
||
Log.debugf 50 (fun k->k "(@[lra.model-ask@ %a@])" T.pp t);
|
||
begin match A.view_as_lra t with
|
||
| LRA_const n -> Some n (* always eval constants to themselves *)
|
||
| _ -> SimpSolver.V_map.get t m
|
||
end |> Option.map (t_const self)
|
||
| _ -> None
|
||
end
|
||
|
||
(* help generating model *)
|
||
let model_complete_ (self:state) _si ~add : unit =
|
||
Log.debugf 30 (fun k->k "(lra.model-complete)");
|
||
begin match self.last_res with
|
||
| Some (SimpSolver.Sat m) when T.Tbl.length self.in_model > 0 ->
|
||
Log.debugf 50 (fun k->k "(@[lra.in_model@ %a@])"
|
||
(Util.pp_iter T.pp) (T.Tbl.keys self.in_model));
|
||
|
||
let add_t t () =
|
||
match SimpSolver.V_map.get t m with
|
||
| None -> ()
|
||
| Some u -> add t (t_const self u)
|
||
in
|
||
T.Tbl.iter add_t self.in_model
|
||
|
||
| _ -> ()
|
||
end
|
||
|
||
let k_state = SI.Registry.create_key ()
|
||
|
||
let create_and_setup si =
|
||
Log.debug 2 "(th-lra.setup)";
|
||
let stat = SI.stats si in
|
||
let st = create ~stat si in
|
||
SI.Registry.set (SI.registry si) k_state st;
|
||
SI.add_simplifier si (simplify st);
|
||
SI.on_preprocess si (preproc_lra st);
|
||
SI.on_final_check si (final_check_ st);
|
||
SI.on_partial_check si (partial_check_ st);
|
||
SI.on_model si ~ask:(model_ask_ st) ~complete:(model_complete_ st);
|
||
SI.on_cc_is_subterm si (on_subterm st);
|
||
SI.on_cc_pre_merge si
|
||
(fun si acts n1 n2 expl ->
|
||
match as_const_ (N.term n1), as_const_ (N.term n2) with
|
||
| Some q1, Some q2 when A.Q.(q1 <> q2) ->
|
||
(* classes with incompatible constants *)
|
||
Log.debugf 30 (fun k->k "(@[lra.merge-incompatible-consts@ %a@ %a@])" N.pp n1 N.pp n2);
|
||
SI.CC.raise_conflict_from_expl si acts expl
|
||
| _ -> ());
|
||
SI.on_th_combination si (do_th_combination st);
|
||
st
|
||
|
||
let theory =
|
||
A.S.mk_theory
|
||
~name:"th-lra"
|
||
~create_and_setup ~push_level ~pop_levels
|
||
()
|
||
end
|