mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-06 03:05:31 -05:00
524 lines
16 KiB
OCaml
524 lines
16 KiB
OCaml
(**************************************************************************)
|
|
(* *)
|
|
(* Cubicle *)
|
|
(* Combining model checking algorithms and SMT solvers *)
|
|
(* *)
|
|
(* Sylvain Conchon, Evelyne Contejean *)
|
|
(* Francois Bobot, Mohamed Iguernelala, Alain Mebsout *)
|
|
(* CNRS, Universite Paris-Sud 11 *)
|
|
(* *)
|
|
(* Copyright 2011. This file is distributed under the terms of the *)
|
|
(* Apache Software License version 2.0 *)
|
|
(* *)
|
|
(**************************************************************************)
|
|
|
|
open Format
|
|
open Sig
|
|
open Exception
|
|
|
|
let max_split = Num.Int 1000000
|
|
|
|
let cc_active = ref true
|
|
|
|
module type S = sig
|
|
type t
|
|
|
|
module TimerCC : Timer.S
|
|
|
|
val empty : unit -> t
|
|
val assume : cs:bool ->
|
|
Literal.LT.t -> Explanation.t -> t -> t * Term.Set.t * int
|
|
val query : Literal.LT.t -> t -> answer
|
|
val class_of : t -> Term.t -> Term.t list
|
|
end
|
|
|
|
module Make (X : Sig.X) = struct
|
|
|
|
module TimerCC = Timer.Make(struct end)
|
|
|
|
module Ex = Explanation
|
|
module SetA = Use.SA
|
|
module Use = Use.Make(X)
|
|
module Uf = Uf.Make(X)
|
|
module T = Term
|
|
module A = Literal
|
|
module LR = A.Make(struct type t = X.r include X end)
|
|
module SetT = Term.Set
|
|
module S = Symbols
|
|
|
|
module SetX = Set.Make(struct type t = X.r let compare = X.compare end)
|
|
|
|
(* module Uf = Pptarjan.Uf *)
|
|
|
|
type env = {
|
|
use : Use.t;
|
|
uf : Uf.t ;
|
|
relation : X.Rel.t
|
|
}
|
|
|
|
type choice_sign =
|
|
| CPos of int (* The explication of this choice *)
|
|
| CNeg (* The choice has been already negated *)
|
|
|
|
type t = {
|
|
gamma : env;
|
|
gamma_finite : env ;
|
|
choices : (X.r A.view * Num.num * choice_sign * Ex.t) list;
|
|
(** the choice, the size, choice_sign, the explication set,
|
|
the explication for this choice. *)
|
|
}
|
|
|
|
module Print = struct
|
|
|
|
let begin_case_split () = ()
|
|
|
|
let end_case_split () = ()
|
|
|
|
let cc r1 r2 = ()
|
|
|
|
let make_cst t ctx = ()
|
|
|
|
let add_to_use t = ()
|
|
|
|
let lrepr fmt = List.iter (fprintf fmt "%a " X.print)
|
|
|
|
let leaves t lvs = ()
|
|
|
|
let contra_congruence a ex = ()
|
|
|
|
let split_size sz = ()
|
|
|
|
let split_backtrack neg_c ex_c = ()
|
|
|
|
let split_assume c ex_c = ()
|
|
|
|
let split_backjump c dep = ()
|
|
|
|
let assume_literal sa = ()
|
|
|
|
let congruent a ex = ()
|
|
|
|
let query a = ()
|
|
|
|
end
|
|
|
|
let bottom = Hstring.make "@bottom"
|
|
let one, _ = X.make (Term.make (S.name bottom) [] Ty.Tint)
|
|
|
|
let concat_leaves uf l =
|
|
let rec concat_rec acc t =
|
|
match X.leaves (fst (Uf.find uf t)) , acc with
|
|
[] , _ -> one::acc
|
|
| res, [] -> res
|
|
| res , _ -> List.rev_append res acc
|
|
in
|
|
match List.fold_left concat_rec [] l with
|
|
[] -> [one]
|
|
| res -> res
|
|
|
|
let are_equal env ex t1 t2 =
|
|
if T.equal t1 t2 then ex
|
|
else match Uf.are_equal env.uf t1 t2 with
|
|
| Yes dep -> Ex.union ex dep
|
|
| No -> raise Exit
|
|
|
|
let equal_only_by_congruence env ex t1 t2 acc =
|
|
if T.equal t1 t2 then acc
|
|
else
|
|
let {T.f=f1; xs=xs1; ty=ty1} = T.view t1 in
|
|
if X.fully_interpreted f1 then acc
|
|
else
|
|
let {T.f=f2; xs=xs2; ty=ty2} = T.view t2 in
|
|
if Symbols.equal f1 f2 && Ty.equal ty1 ty2 then
|
|
try
|
|
let ex = List.fold_left2 (are_equal env) ex xs1 xs2 in
|
|
let a = A.LT.make (A.Eq(t1, t2)) in
|
|
Print.congruent a ex;
|
|
(LTerm a, ex) :: acc
|
|
with Exit -> acc
|
|
else acc
|
|
|
|
let congruents env t1 s acc ex =
|
|
SetT.fold (equal_only_by_congruence env ex t1) s acc
|
|
|
|
let fold_find_with_explanation find ex l =
|
|
List.fold_left
|
|
(fun (lr, ex) t -> let r, ex_r = find t in r::lr, Ex.union ex_r ex)
|
|
([], ex) l
|
|
|
|
let view find va ex_a =
|
|
match va with
|
|
| A.Eq (t1, t2) ->
|
|
let r1, ex1 = find t1 in
|
|
let r2, ex2 = find t2 in
|
|
let ex = Ex.union (Ex.union ex1 ex2) ex_a in
|
|
A.Eq(r1, r2), ex
|
|
| A.Distinct (b, lt) ->
|
|
let lr, ex = fold_find_with_explanation find ex_a lt in
|
|
A.Distinct (b, lr), ex
|
|
| A.Builtin(b, s, l) ->
|
|
let lr, ex = fold_find_with_explanation find ex_a l in
|
|
A.Builtin(b, s, List.rev lr), ex
|
|
|
|
let term_canonical_view env a ex_a =
|
|
view (Uf.find env.uf) (A.LT.view a) ex_a
|
|
|
|
let canonical_view env a ex_a = view (Uf.find_r env.uf) a ex_a
|
|
|
|
let new_facts_by_contra_congruence env r bol ex =
|
|
match X.term_extract r with
|
|
| None -> []
|
|
| Some t1 ->
|
|
match T.view t1 with
|
|
| {T.f=f1 ; xs=[x]} ->
|
|
List.fold_left
|
|
(fun acc t2 ->
|
|
match T.view t2 with
|
|
| {T.f=f2 ; xs=[y]} when S.equal f1 f2 ->
|
|
let a = A.LT.make (A.Distinct (false, [x; y])) in
|
|
let dist = LTerm a in
|
|
begin match Uf.are_distinct env.uf t1 t2 with
|
|
| Yes ex' ->
|
|
let ex_r = Ex.union ex ex' in
|
|
Print.contra_congruence a ex_r;
|
|
(dist, ex_r) :: acc
|
|
| No -> assert false
|
|
end
|
|
| _ -> acc
|
|
) [] (Uf.class_of env.uf bol)
|
|
| _ -> []
|
|
|
|
let contra_congruence =
|
|
let vrai,_ = X.make T.vrai in
|
|
let faux, _ = X.make T.faux in
|
|
fun env r ex ->
|
|
if X.equal (fst (Uf.find_r env.uf r)) vrai then
|
|
new_facts_by_contra_congruence env r T.faux ex
|
|
else if X.equal (fst (Uf.find_r env.uf r)) faux then
|
|
new_facts_by_contra_congruence env r T.vrai ex
|
|
else []
|
|
|
|
let clean_use =
|
|
List.fold_left
|
|
(fun env (a, ex) ->
|
|
match a with
|
|
| LSem _ -> assert false
|
|
| LTerm t ->
|
|
begin
|
|
match A.LT.view t with
|
|
| A.Distinct (_, lt)
|
|
| A.Builtin (_, _, lt) ->
|
|
let lvs = concat_leaves env.uf lt in
|
|
List.fold_left
|
|
(fun env rx ->
|
|
let st, sa = Use.find rx env.use in
|
|
let sa = SetA.remove (t, ex) sa in
|
|
{ env with use = Use.add rx (st,sa) env.use }
|
|
) env lvs
|
|
| _ -> assert false
|
|
end)
|
|
|
|
let rec congruence_closure env r1 r2 ex =
|
|
Print.cc r1 r2;
|
|
let uf, res = Uf.union env.uf r1 r2 ex in
|
|
List.fold_left
|
|
(fun (env, l) (p, touched, v) ->
|
|
(* we look for use(p) *)
|
|
let p_t, p_a = Use.find p env.use in
|
|
|
|
(* we compute terms and atoms to consider for congruence *)
|
|
let repr_touched = List.map (fun (_,a,_) -> a) touched in
|
|
let st_others, sa_others = Use.congr_close_up env.use p repr_touched in
|
|
|
|
(* we update use *)
|
|
let nuse = Use.up_close_up env.use p v in
|
|
Use.print nuse;
|
|
|
|
(* we check the congruence of the terms. *)
|
|
let env = {env with use=nuse} in
|
|
let new_eqs =
|
|
SetT.fold (fun t l -> congruents env t st_others l ex) p_t l in
|
|
let touched_atoms =
|
|
List.map (fun (x,y,e)-> (LSem(A.Eq(x, y)), e)) touched
|
|
in
|
|
let touched_atoms = SetA.fold (fun (a, ex) acc ->
|
|
(LTerm a, ex)::acc) p_a touched_atoms in
|
|
let touched_atoms = SetA.fold (fun (a, ex) acc ->
|
|
(LTerm a, ex)::acc) sa_others touched_atoms in
|
|
env, new_eqs @ touched_atoms
|
|
|
|
) ({env with uf=uf}, []) res
|
|
|
|
let replay_atom env sa =
|
|
let relation, result = X.Rel.assume env.relation sa in
|
|
let env = { env with relation = relation } in
|
|
let env = clean_use env result.remove in
|
|
env, result.assume
|
|
|
|
let rec add_term env choices t ex =
|
|
(* nothing to do if the term already exists *)
|
|
if Uf.mem env.uf t then env, choices
|
|
else begin
|
|
Print.add_to_use t;
|
|
(* we add t's arguments in env *)
|
|
let {T.f = f; xs = xs} = T.view t in
|
|
let env, choices =
|
|
List.fold_left (fun (env, ch) t -> add_term env ch t ex)
|
|
(env, choices) xs
|
|
in
|
|
(* we update uf and use *)
|
|
let nuf, ctx = Uf.add env.uf t in
|
|
Print.make_cst t ctx;
|
|
let rt, _ = Uf.find nuf t in (* XXX : ctx only in terms *)
|
|
|
|
if !cc_active then
|
|
let lvs = concat_leaves nuf xs in
|
|
let nuse = Use.up_add env.use t rt lvs in
|
|
|
|
(* If finitetest is used we add the term to the relation *)
|
|
let rel = X.Rel.add env.relation rt in
|
|
Use.print nuse;
|
|
|
|
(* we compute terms to consider for congruence *)
|
|
(* we do this only for non-atomic terms with uninterpreted head-symbol *)
|
|
let st_uset = Use.congr_add nuse lvs in
|
|
|
|
(* we check the congruence of each term *)
|
|
let env = {uf = nuf; use = nuse; relation = rel} in
|
|
let ct = congruents env t st_uset [] ex in
|
|
let ct = (List.map (fun lt -> LTerm lt, ex) ctx) @ ct in
|
|
assume_literal env choices ct
|
|
else
|
|
let rel = X.Rel.add env.relation rt in
|
|
let env = {env with uf = nuf; relation = rel} in
|
|
env, choices
|
|
end
|
|
|
|
and add env choices a ex =
|
|
match A.LT.view a with
|
|
| A.Eq (t1, t2) ->
|
|
let env, choices = add_term env choices t1 ex in
|
|
add_term env choices t2 ex
|
|
| A.Distinct (_, lt)
|
|
| A.Builtin (_, _, lt) ->
|
|
let env, choices = List.fold_left
|
|
(fun (env, ch) t-> add_term env ch t ex) (env, choices) lt in
|
|
let lvs = concat_leaves env.uf lt in (* A verifier *)
|
|
let env = List.fold_left
|
|
(fun env rx ->
|
|
let st, sa = Use.find rx env.use in
|
|
{ env with
|
|
use = Use.add rx (st,SetA.add (a, ex) sa) env.use }
|
|
) env lvs
|
|
in
|
|
env, choices
|
|
|
|
and semantic_view env choices la =
|
|
List.fold_left
|
|
(fun (env, choices, lsa) (a, ex) ->
|
|
match a with
|
|
| LTerm a ->
|
|
let env, choices = add env choices a ex in
|
|
let sa, ex = term_canonical_view env a ex in
|
|
env, choices, (sa, Some a, ex)::lsa
|
|
|
|
(* XXX si on fait canonical_view pour
|
|
A.Distinct, la theorie des tableaux
|
|
part dans les choux *)
|
|
| LSem (A.Builtin _ (*| A.Distinct _*) as sa) ->
|
|
let sa, ex = canonical_view env sa ex in
|
|
env, choices, (sa, None, ex)::lsa
|
|
| LSem sa ->
|
|
env, choices, (sa, None, ex)::lsa)
|
|
(env, choices, []) la
|
|
|
|
and assume_literal env choices la =
|
|
if la = [] then env, choices
|
|
else
|
|
let env, choices, lsa = semantic_view env choices la in
|
|
let env, choices =
|
|
List.fold_left
|
|
(fun (env, choices) (sa, _, ex) ->
|
|
Print.assume_literal sa;
|
|
match sa with
|
|
| A.Eq(r1, r2) ->
|
|
if !cc_active then
|
|
let env, l = congruence_closure env r1 r2 ex in
|
|
let env, choices = assume_literal env choices l in
|
|
let env, choices =
|
|
assume_literal env choices (contra_congruence env r1 ex)
|
|
in
|
|
assume_literal env choices (contra_congruence env r2 ex)
|
|
else
|
|
{env with uf = fst(Uf.union env.uf r1 r2 ex)}, choices
|
|
| A.Distinct (false, lr) ->
|
|
if Uf.already_distinct env.uf lr then env, choices
|
|
else
|
|
{env with uf = Uf.distinct env.uf lr ex}, choices
|
|
| A.Distinct (true, _) -> assert false
|
|
| A.Builtin _ -> env, choices)
|
|
(env, choices) lsa
|
|
in
|
|
let env, l = replay_atom env lsa in
|
|
assume_literal env (choices@l) l
|
|
|
|
let look_for_sat ?(bad_last=No) ch t base_env l =
|
|
let rec aux ch bad_last dl base_env li =
|
|
match li, bad_last with
|
|
| [], _ ->
|
|
begin
|
|
match X.Rel.case_split base_env.relation with
|
|
| [] ->
|
|
{ t with gamma_finite = base_env; choices = List.rev dl }, ch
|
|
| l ->
|
|
let l =
|
|
List.map
|
|
(fun (c, ex_c, size) ->
|
|
let exp = Ex.fresh_exp () in
|
|
let ex_c_exp = Ex.add_fresh exp ex_c in
|
|
(* A new explanation in order to track the choice *)
|
|
(c, size, CPos exp, ex_c_exp)) l in
|
|
let sz =
|
|
List.fold_left
|
|
(fun acc (a,s,_,_) ->
|
|
Num.mult_num acc s) (Num.Int 1) (l@dl) in
|
|
Print.split_size sz;
|
|
if Num.le_num sz max_split then aux ch No dl base_env l
|
|
else
|
|
{ t with gamma_finite = base_env; choices = List.rev dl }, ch
|
|
end
|
|
| ((c, size, CNeg, ex_c) as a)::l, _ ->
|
|
let base_env, ch = assume_literal base_env ch [LSem c, ex_c] in
|
|
aux ch bad_last (a::dl) base_env l
|
|
|
|
(** This optimisation is not correct with the current explanation *)
|
|
(* | [(c, size, CPos exp, ex_c)], Yes dep -> *)
|
|
(* let neg_c = LR.neg (LR.make c) in *)
|
|
(* let ex_c = Ex.union ex_c dep in *)
|
|
(* Print.split_backtrack neg_c ex_c; *)
|
|
(* aux ch No dl base_env [LR.view neg_c, Num.Int 1, CNeg, ex_c] *)
|
|
|
|
| ((c, size, CPos exp, ex_c_exp) as a)::l, _ ->
|
|
try
|
|
Print.split_assume (LR.make c) ex_c_exp;
|
|
let base_env, ch = assume_literal base_env ch [LSem c, ex_c_exp] in
|
|
aux ch bad_last (a::dl) base_env l
|
|
with Exception.Inconsistent dep ->
|
|
match Ex.remove_fresh exp dep with
|
|
| None ->
|
|
(* The choice doesn't participate to the inconsistency *)
|
|
Print.split_backjump (LR.make c) dep;
|
|
raise (Exception.Inconsistent dep)
|
|
| Some dep ->
|
|
(* The choice participates to the inconsistency *)
|
|
let neg_c = LR.neg (LR.make c) in
|
|
Print.split_backtrack neg_c dep;
|
|
aux ch No dl base_env [LR.view neg_c, Num.Int 1, CNeg, dep]
|
|
in
|
|
aux ch bad_last (List.rev t.choices) base_env l
|
|
|
|
let try_it f t =
|
|
Print.begin_case_split ();
|
|
let r =
|
|
try
|
|
if t.choices = [] then look_for_sat [] t t.gamma []
|
|
else
|
|
try
|
|
let env, lt = f t.gamma_finite in
|
|
look_for_sat lt t env []
|
|
with Exception.Inconsistent dep ->
|
|
look_for_sat ~bad_last:(Yes dep)
|
|
[] { t with choices = []} t.gamma t.choices
|
|
with Exception.Inconsistent d ->
|
|
Print.end_case_split ();
|
|
raise (Exception.Inconsistent d)
|
|
in
|
|
Print.end_case_split (); r
|
|
|
|
let extract_from_semvalues =
|
|
List.fold_left
|
|
(fun acc r ->
|
|
match X.term_extract r with Some t -> SetT.add t acc | _ -> acc)
|
|
|
|
let extract_terms_from_choices =
|
|
List.fold_left
|
|
(fun acc (a, _, _, _) ->
|
|
match a with
|
|
| A.Eq(r1, r2) -> extract_from_semvalues acc [r1; r2]
|
|
| A.Distinct (_, l) -> extract_from_semvalues acc l
|
|
| _ -> acc)
|
|
|
|
let extract_terms_from_assumed =
|
|
List.fold_left
|
|
(fun acc (a, _) ->
|
|
match a with
|
|
| LTerm r -> begin
|
|
match Literal.LT.view r with
|
|
| Literal.Eq (t1, t2) ->
|
|
SetT.add t1 (SetT.add t2 acc)
|
|
| Literal.Distinct (_, l) | Literal.Builtin (_, _, l) ->
|
|
List.fold_right SetT.add l acc
|
|
end
|
|
| _ -> acc)
|
|
|
|
let assume ~cs a ex t =
|
|
let a = LTerm a in
|
|
let gamma, ch = assume_literal t.gamma [] [a, ex] in
|
|
let t = { t with gamma = gamma } in
|
|
let t, ch =
|
|
if cs then try_it (fun env -> assume_literal env ch [a, ex] ) t
|
|
else t, ch
|
|
in
|
|
let choices = extract_terms_from_choices SetT.empty t.choices in
|
|
let all_terms = extract_terms_from_assumed choices ch in
|
|
t, all_terms, 1
|
|
|
|
let class_of t term = Uf.class_of t.gamma.uf term
|
|
|
|
let add_and_process a t =
|
|
let aux a ex env =
|
|
let gamma, l = add env [] a ex in assume_literal gamma [] l
|
|
in
|
|
let gamma, _ = aux a Ex.empty t.gamma in
|
|
let t = { t with gamma = gamma } in
|
|
let t, _ = try_it (aux a Ex.empty) t in
|
|
Use.print t.gamma.use; t
|
|
|
|
let query a t =
|
|
Print.query a;
|
|
try
|
|
match A.LT.view a with
|
|
| A.Eq (t1, t2) ->
|
|
let t = add_and_process a t in
|
|
Uf.are_equal t.gamma.uf t1 t2
|
|
|
|
| A.Distinct (false, [t1; t2]) ->
|
|
let na = A.LT.neg a in
|
|
let t = add_and_process na t in (* na ? *)
|
|
Uf.are_distinct t.gamma.uf t1 t2
|
|
|
|
| A.Distinct _ ->
|
|
assert false (* devrait etre capture par une analyse statique *)
|
|
|
|
| _ ->
|
|
let na = A.LT.neg a in
|
|
let t = add_and_process na t in
|
|
let env = t.gamma in
|
|
let rna, ex_rna = term_canonical_view env na Ex.empty in
|
|
X.Rel.query env.relation (rna, Some na, ex_rna)
|
|
with Exception.Inconsistent d -> Yes d
|
|
|
|
let empty () =
|
|
let env = {
|
|
use = Use.empty ;
|
|
uf = Uf.empty ;
|
|
relation = X.Rel.empty ();
|
|
}
|
|
in
|
|
let t = { gamma = env; gamma_finite = env; choices = [] } in
|
|
let t, _, _ =
|
|
assume ~cs:false
|
|
(A.LT.make (A.Distinct (false, [T.vrai; T.faux]))) Ex.empty t
|
|
in t
|
|
|
|
end
|