mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-06 03:05:31 -05:00
164 lines
5 KiB
OCaml
164 lines
5 KiB
OCaml
(* Copyright 2014 Guillaume Bury *)
|
|
|
|
module type S = Res_intf.S
|
|
|
|
module Make(St : Solver_types.S)(Proof : sig type t end) = struct
|
|
|
|
(* Type definitions *)
|
|
type lemma = Proof.t
|
|
type clause = St.clause
|
|
type atom = St.atom
|
|
type int_cl = St.atom list
|
|
|
|
type node =
|
|
| Assumption
|
|
| Lemma of lemma
|
|
| Resolution of atom * int_cl * int_cl
|
|
(* lits, c1, c2 with lits the literals used to resolve c1 and c2 *)
|
|
|
|
exception Tautology
|
|
exception Resolution_error of string
|
|
|
|
(* Proof graph *)
|
|
module H = Hashtbl.Make(struct
|
|
type t = St.atom list
|
|
let hash= Hashtbl.hash
|
|
let equal = List.for_all2 (==)
|
|
end)
|
|
let proof : node H.t = H.create 1007;;
|
|
|
|
(* Misc functions *)
|
|
let compare_atoms a b =
|
|
Pervasives.compare St.(a.aid) St.(b.aid)
|
|
|
|
let equal_atoms a b = St.(a.aid) = St.(b.aid)
|
|
|
|
|
|
(* Compute resolution of 2 clauses *)
|
|
let resolve l =
|
|
let rec aux resolved acc = function
|
|
| [] -> resolved, acc
|
|
| [a] -> resolved, a :: acc
|
|
| a :: b :: r ->
|
|
if equal_atoms a b then
|
|
aux resolved (a :: acc) r
|
|
else if equal_atoms St.(a.neg) b then
|
|
aux (St.(a.var.pa) :: resolved) acc r
|
|
else
|
|
aux resolved (a :: acc) (b :: r)
|
|
in
|
|
let resolved, new_clause = aux [] [] l in
|
|
resolved, List.rev new_clause
|
|
|
|
let to_list c =
|
|
let v = St.(c.atoms) in
|
|
let l = ref [] in
|
|
for i = 0 to Vec.size v - 1 do
|
|
l := (Vec.get v i) :: !l
|
|
done;
|
|
let l, res = resolve (List.sort_uniq compare_atoms !l) in
|
|
if l <> [] then
|
|
raise (Resolution_error "Input cause is a tautology");
|
|
res
|
|
|
|
(* Adding new proven clauses *)
|
|
let is_proved c = H.mem proof c
|
|
|
|
let rec add_res c d =
|
|
add_clause c;
|
|
add_clause d;
|
|
let cl_c = to_list c in
|
|
let cl_d = to_list d in
|
|
let l = List.merge compare_atoms cl_c cl_d in
|
|
let resolved, new_clause = resolve l in
|
|
match resolved with
|
|
| [] -> raise (Resolution_error "No literal to resolve over")
|
|
| [a] ->
|
|
H.add proof new_clause (Resolution (a, cl_c, cl_d));
|
|
new_clause
|
|
| _ -> raise (Resolution_error "Resolved to a tautology")
|
|
|
|
and add_clause c =
|
|
let cl = to_list c in
|
|
if is_proved cl then
|
|
()
|
|
else if not St.(c.learnt) then
|
|
H.add proof cl Assumption
|
|
else begin
|
|
let history = St.(c.cpremise) in
|
|
()
|
|
(* TODO
|
|
match history with
|
|
| a :: (_ :: _) as r ->
|
|
List.fold_left add_res a r
|
|
*)
|
|
end
|
|
|
|
(* Print proof graph *)
|
|
let _i = ref 0
|
|
let new_id () = incr _i; "id_" ^ (string_of_int !_i)
|
|
|
|
let ids : (bool * string) H.t = H.create 1007;;
|
|
let cl_id c =
|
|
try
|
|
snd (H.find ids c)
|
|
with Not_found ->
|
|
let id = new_id () in
|
|
H.add ids c (false, id);
|
|
id
|
|
|
|
let is_drawn c =
|
|
try
|
|
fst (H.find ids c)
|
|
with Not_found ->
|
|
false
|
|
|
|
let has_drawn c =
|
|
assert (H.mem ids c);
|
|
let b, id = H.find ids c in
|
|
assert (not b);
|
|
H.replace ids c (true, id)
|
|
|
|
let print_atom fmt a =
|
|
Format.fprintf fmt "%s%d" St.(if a.var.pa == a then "" else "-") St.(a.var.vid + 1)
|
|
|
|
let rec print_clause fmt = function
|
|
| [] -> Format.fprintf fmt "[]"
|
|
| [a] -> print_atom fmt a
|
|
| a :: (_ :: _) as r -> Format.fprintf fmt "%a \\/ %a" print_atom a print_clause r
|
|
|
|
let print_dot_rule f arg fmt cl =
|
|
Format.fprintf fmt "%s [shape=plaintext, label=<<TABLE %s>%a</TABLE>>];@\n"
|
|
(cl_id cl) "BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\">" f arg
|
|
|
|
let print_dot_edge c fmt d =
|
|
Format.fprintf fmt "%s -> %s;@\n" (cl_id c) (cl_id d)
|
|
|
|
let print_dot_proof fmt cl =
|
|
match H.find proof cl with
|
|
| Assumption ->
|
|
let aux fmt () =
|
|
Format.fprintf fmt "<TR><TD BGCOLOR=\"LIGHTBLUE\">%a</TD></TR>" print_clause cl
|
|
in
|
|
print_dot_rule aux () fmt cl
|
|
| Lemma _ ->
|
|
let aux fmt () =
|
|
Format.fprintf fmt "<TR><TD BGCOLOR=\"LIGHTBLUE\">%a</TD></TR><TR><TD>to prove ...</TD></TR>" print_clause cl
|
|
in
|
|
print_dot_rule aux () fmt cl
|
|
| Resolution (r, c, d) ->
|
|
let aux fmt () =
|
|
Format.fprintf fmt "<TR><TD>%a</TD></TR><TR><TD>%a</TD</TR>"
|
|
print_clause cl print_atom r
|
|
in
|
|
Format.fprintf fmt "%a%a%a"
|
|
(print_dot_rule aux ()) cl
|
|
(print_dot_edge cl) c
|
|
(print_dot_edge cl) d
|
|
|
|
let print_dot fmt cl =
|
|
assert (is_proved cl);
|
|
Format.fprintf fmt "digraph proof {@\n%a@\n}@." print_dot_proof cl
|
|
|
|
end
|
|
|