sidekick/src/core-logic/term.ml
Simon Cruanes 7b4404fb78
feat(tracing): introduce term/const serialization
- use a record instead of 1st class module for `Const.ops`, so it
  can be mutually recursive with the definition of `term`
- remove unused `Const.ops.opaque_to_cc`
- constants are serializable using `Ser_value`
2022-09-23 22:13:21 -04:00

697 lines
20 KiB
OCaml

open Types_
type var = Var.t
type bvar = Bvar.t
type nonrec term = term
type view = term_view =
| E_type of int
| E_var of var
| E_bound_var of bvar
| E_const of const
| E_app of term * term
| E_app_fold of {
f: term; (** function to fold *)
args: term list; (** Arguments to the fold *)
acc0: term; (** initial accumulator *)
}
| E_lam of string * term * term
| E_pi of string * term * term
type t = term
(* 5 bits in [t.id] are used to store which store it belongs to, so we have
a chance of detecting when the user passes a term to the wrong store *)
let store_id_bits = 5
(* mask to access the store id *)
let store_id_mask = (1 lsl store_id_bits) - 1
include Term_
let[@inline] view (e : term) : view = e.view
let[@inline] db_depth e = e.flags lsr (1 + store_id_bits)
let[@inline] has_fvars e = (e.flags lsr store_id_bits) land 1 == 1
let[@inline] store_uid e : int = e.flags land store_id_mask
let[@inline] is_closed e : bool = db_depth e == 0
(* slow path *)
let[@inline never] ty_force_delayed_ e f =
let ty = f () in
e.ty <- T_ty ty;
ty
let[@inline] ty e : term =
match e.ty with
| T_ty t -> t
| T_ty_delayed f -> ty_force_delayed_ e f
(* open an application *)
let[@inline] unfold_app (e : term) : term * term list =
let[@unroll 1] rec aux acc e =
match e.view with
| E_app (f, a) -> aux (a :: acc) f
| _ -> e, acc
in
aux [] e
let[@inline] is_const e =
match e.view with
| E_const _ -> true
| _ -> false
let[@inline] is_app e =
match e.view with
| E_app _ -> true
| _ -> false
let[@inline] is_pi e =
match e.view with
| E_pi _ -> true
| _ -> false
(* debug printer *)
let expr_pp_with_ ~pp_ids ~max_depth out (e : term) : unit =
let rec loop k ~depth names out e =
let pp' = loop k ~depth:(depth + 1) names in
(match e.view with
| E_type 0 -> Fmt.string out "Type"
| E_type i -> Fmt.fprintf out "Type(%d)" i
| E_var v -> Fmt.string out v.v_name
(* | E_var v -> Fmt.fprintf out "(@[%s : %a@])" v.v_name pp v.v_ty *)
| E_bound_var v ->
let idx = v.bv_idx in
(match CCList.nth_opt names idx with
| Some n when n <> "" -> Fmt.fprintf out "%s[%d]" n idx
| _ -> Fmt.fprintf out "_[%d]" idx)
| E_const c -> Const.pp out c
| (E_app _ | E_lam _) when depth > max_depth ->
Fmt.fprintf out "@<1>…/%d" e.id
| E_app _ ->
let f, args = unfold_app e in
Fmt.fprintf out "(%a@ %a)" pp' f (Util.pp_list pp') args
| E_lam ("", _ty, bod) ->
Fmt.fprintf out "(@[\\_:@[%a@].@ %a@])" pp' _ty
(loop (k + 1) ~depth:(depth + 1) ("" :: names))
bod
| E_app_fold { f; args; acc0 } ->
Fmt.fprintf out "(@[%a" pp' f;
List.iter (fun x -> Fmt.fprintf out "@ %a" pp' x) args;
Fmt.fprintf out "@ %a" pp' acc0;
Fmt.fprintf out "@])"
| E_lam (n, _ty, bod) ->
Fmt.fprintf out "(@[\\%s:@[%a@].@ %a@])" n pp' _ty
(loop (k + 1) ~depth:(depth + 1) (n :: names))
bod
| E_pi (_, ty, bod) when is_closed bod ->
(* actually just an arrow *)
Fmt.fprintf out "(@[%a@ -> %a@])"
(loop k ~depth:(depth + 1) names)
ty
(loop (k + 1) ~depth:(depth + 1) ("" :: names))
bod
| E_pi ("", _ty, bod) ->
Fmt.fprintf out "(@[Pi _:@[%a@].@ %a@])" pp' _ty
(loop (k + 1) ~depth:(depth + 1) ("" :: names))
bod
| E_pi (n, _ty, bod) ->
Fmt.fprintf out "(@[Pi %s:@[%a@].@ %a@])" n pp' _ty
(loop (k + 1) ~depth:(depth + 1) (n :: names))
bod);
if pp_ids then Fmt.fprintf out "/%d" e.id
in
Fmt.fprintf out "@[%a@]" (loop 0 ~depth:0 []) e
let pp_debug = expr_pp_with_ ~pp_ids:false ~max_depth:max_int
let pp_debug_with_ids = expr_pp_with_ ~pp_ids:true ~max_depth:max_int
let () = pp_debug_ := pp_debug
module AsKey = struct
type nonrec t = term
let equal = equal
let compare = compare
let hash = hash
end
module Map = CCMap.Make (AsKey)
module Set = CCSet.Make (AsKey)
module Tbl = CCHashtbl.Make (AsKey)
module Weak_set = Weak.Make (AsKey)
module Weak_map = Ephemeron.K1.Make (AsKey)
module Hcons = Hashcons.Make (struct
type nonrec t = term
let equal a b =
match a.view, b.view with
| E_type i, E_type j -> i = j
| E_const c1, E_const c2 -> Const.equal c1 c2
| E_var v1, E_var v2 -> Var.equal v1 v2
| E_bound_var v1, E_bound_var v2 -> Bvar.equal v1 v2
| E_app (f1, a1), E_app (f2, a2) -> equal f1 f2 && equal a1 a2
| E_app_fold a1, E_app_fold a2 ->
equal a1.f a2.f && equal a1.acc0 a2.acc0
&& CCList.equal equal a1.args a2.args
| E_lam (_, ty1, bod1), E_lam (_, ty2, bod2) ->
equal ty1 ty2 && equal bod1 bod2
| E_pi (_, ty1, bod1), E_pi (_, ty2, bod2) ->
equal ty1 ty2 && equal bod1 bod2
| ( ( E_type _ | E_const _ | E_var _ | E_bound_var _ | E_app _
| E_app_fold _ | E_lam _ | E_pi _ ),
_ ) ->
false
let hash e : int =
match e.view with
| E_type i -> H.combine2 10 (H.int i)
| E_const c -> H.combine2 20 (Const.hash c)
| E_var v -> H.combine2 30 (Var.hash v)
| E_bound_var v -> H.combine2 40 (Bvar.hash v)
| E_app (f, a) -> H.combine3 50 (hash f) (hash a)
| E_app_fold a ->
H.combine4 55 (hash a.f) (hash a.acc0) (Hash.list hash a.args)
| E_lam (_, ty, bod) -> H.combine3 60 (hash ty) (hash bod)
| E_pi (_, ty, bod) -> H.combine3 70 (hash ty) (hash bod)
let set_id t id =
assert (t.id == -1);
t.id <- id
end)
module Store = struct
type t = { (* unique ID for this store *)
s_uid: int; s_exprs: Hcons.t }
(* TODO: use atomic? CCAtomic? *)
let n = ref 0
let size self = Hcons.size self.s_exprs
let create ?(size = 256) () : t =
(* store id, modulo 2^5 *)
let s_uid = !n land store_id_mask in
incr n;
{ s_uid; s_exprs = Hcons.create ~size () }
(* check that [e] belongs in this store *)
let[@inline] check_e_uid (self : t) (e : term) =
assert (self.s_uid == store_uid e)
end
type store = Store.t
let iter_shallow ~f (e : term) : unit =
match e.view with
| E_type _ -> ()
| _ ->
f false (ty e);
(match e.view with
| E_const _ -> ()
| E_type _ -> assert false
| E_var v -> f false v.v_ty
| E_bound_var v -> f false v.bv_ty
| E_app (hd, a) ->
f false hd;
f false a
| E_app_fold { f = fold_f; args; acc0 } ->
f false fold_f;
f false acc0;
List.iter (fun u -> f false u) args
| E_lam (_, tyv, bod) | E_pi (_, tyv, bod) ->
f false tyv;
f true bod)
let map_shallow_ ~make ~f (e : term) : term =
match view e with
| E_type _ | E_const _ -> e
| E_var v ->
let v_ty = f false v.v_ty in
if v_ty == v.v_ty then
e
else
make (E_var { v with v_ty })
| E_bound_var v ->
let ty' = f false v.bv_ty in
if v.bv_ty == ty' then
e
else
make (E_bound_var { v with bv_ty = ty' })
| E_app (hd, a) ->
let hd' = f false hd in
let a' = f false a in
if a == a' && hd == hd' then
e
else
make (E_app (f false hd, f false a))
| E_app_fold { f = fold_f; args = l; acc0 } ->
let fold_f' = f false fold_f in
let l' = List.map (fun u -> f false u) l in
let acc0' = f false acc0 in
if equal fold_f fold_f' && equal acc0 acc0' && CCList.equal equal l l' then
e
else
make (E_app_fold { f = fold_f'; args = l'; acc0 = acc0' })
| E_lam (n, tyv, bod) ->
let tyv' = f false tyv in
let bod' = f true bod in
if tyv == tyv' && bod == bod' then
e
else
make (E_lam (n, tyv', bod'))
| E_pi (n, tyv, bod) ->
let tyv' = f false tyv in
let bod' = f true bod in
if tyv == tyv' && bod == bod' then
e
else
make (E_pi (n, tyv', bod'))
exception IsSub
let[@inline] is_type e =
match e.view with
| E_type _ -> true
| _ -> false
let[@inline] is_a_type (t : t) = is_type (ty t)
let iter_dag ?(seen = Tbl.create 8) ~iter_ty ~f e : unit =
let rec loop e =
if not (Tbl.mem seen e) then (
Tbl.add seen e ();
if iter_ty && not (is_type e) then loop (ty e);
f e;
iter_shallow e ~f:(fun _ u -> loop u)
)
in
loop e
exception E_exit
let exists_shallow ~f e : bool =
try
iter_shallow e ~f:(fun b x -> if f b x then raise_notrace E_exit);
false
with E_exit -> true
let for_all_shallow ~f e : bool =
try
iter_shallow e ~f:(fun b x -> if not (f b x) then raise_notrace E_exit);
true
with E_exit -> false
let contains e ~sub : bool =
try
iter_dag ~iter_ty:true e ~f:(fun e' ->
if equal e' sub then raise_notrace IsSub);
false
with IsSub -> true
let free_vars_iter e : var Iter.t =
fun yield ->
iter_dag ~iter_ty:true e ~f:(fun e' ->
match view e' with
| E_var v -> yield v
| _ -> ())
let free_vars ?(init = Var.Set.empty) e : Var.Set.t =
let set = ref init in
free_vars_iter e (fun v -> set := Var.Set.add v !set);
!set
module Make_ = struct
let compute_db_depth_ e : int =
if is_type e then
0
else (
let d1 = db_depth @@ ty e in
let d2 =
match view e with
| E_type _ | E_const _ | E_var _ -> 0
| E_bound_var v -> v.bv_idx + 1
| E_app (a, b) -> max (db_depth a) (db_depth b)
| E_app_fold { f; acc0; args } ->
let m = max (db_depth f) (db_depth acc0) in
List.fold_left (fun x u -> max x (db_depth u)) m args
| E_lam (_, ty, bod) | E_pi (_, ty, bod) ->
max (db_depth ty) (max 0 (db_depth bod - 1))
in
max d1 d2
)
let compute_has_fvars_ e : bool =
if is_type e then
false
else
has_fvars (ty e)
||
match view e with
| E_var _ -> true
| E_type _ | E_bound_var _ | E_const _ -> false
| E_app (a, b) -> has_fvars a || has_fvars b
| E_app_fold { f; acc0; args } ->
has_fvars f || has_fvars acc0 || List.exists has_fvars args
| E_lam (_, ty, bod) | E_pi (_, ty, bod) -> has_fvars ty || has_fvars bod
let universe_ (e : term) : int =
match e.view with
| E_type i -> i
| _ -> assert false
let[@inline] universe_of_ty_ (e : term) : int =
match e.view with
| E_type i -> i + 1
| _ -> universe_ (ty e)
module T_int_tbl = CCHashtbl.Make (struct
type t = term * int
let equal (t1, k1) (t2, k2) = equal t1 t2 && k1 == k2
let hash (t, k) = H.combine3 27 (hash t) (H.int k)
end)
(* shift open bound variables of [e] by [n] *)
let db_shift_ ~make (e : term) (n : int) =
let rec loop e k : term =
if is_closed e then
e
else if is_type e then
e
else (
match view e with
| E_bound_var bv ->
if bv.bv_idx >= k then
make (E_bound_var (Bvar.make (bv.bv_idx + n) bv.bv_ty))
else
e
| _ ->
map_shallow_ e ~make ~f:(fun inbind u ->
loop u
(if inbind then
k + 1
else
k))
)
in
assert (n >= 0);
if n = 0 || is_closed e then
e
else
loop e 0
(* replace DB0 in [e] with [u] *)
let db_0_replace_ ~make e ~by:u : term =
let cache_ = T_int_tbl.create 8 in
(* recurse in subterm [e], under [k] intermediate binders (so any
bound variable under k is bound by them) *)
let rec aux e k : term =
if is_type e then
e
else if db_depth e < k then
e
else (
match view e with
| E_const _ -> e
| E_bound_var bv when bv.bv_idx = k ->
(* replace [bv] with [u], and shift [u] to account for the
[k] intermediate binders we traversed to get to [bv] *)
db_shift_ ~make u k
| _ ->
(* use the cache *)
(try T_int_tbl.find cache_ (e, k)
with Not_found ->
let r =
map_shallow_ e ~make ~f:(fun inb u ->
aux u
(if inb then
k + 1
else
k))
in
T_int_tbl.add cache_ (e, k) r;
r)
)
in
if is_closed e then
e
else
aux e 0
let compute_ty_ store ~make (view : view) : term =
match view with
| E_var v -> Var.ty v
| E_bound_var v -> Bvar.ty v
| E_type i -> make (E_type (i + 1))
| E_const c ->
let ty = Const.ty c in
Store.check_e_uid store ty;
if not (is_closed ty) then
Error.errorf "const %a@ cannot have a non-closed type like %a" Const.pp
c pp_debug ty;
ty
| E_lam (name, ty_v, bod) ->
Store.check_e_uid store ty_v;
Store.check_e_uid store bod;
(* type of [\x:tau. bod] is [pi x:tau. typeof(bod)] *)
let ty_bod = ty bod in
make (E_pi (name, ty_v, ty_bod))
| E_app (f, a) ->
(* type of [f a], where [a:tau] and [f: Pi x:tau. ty_bod_f],
is [ty_bod_f[x := a]] *)
Store.check_e_uid store f;
Store.check_e_uid store a;
let ty_f = ty f in
let ty_a = ty a in
(match ty_f.view with
| E_pi (_, ty_arg_f, ty_bod_f) ->
(* check that the expected type matches *)
if not (equal ty_arg_f ty_a) then
Error.errorf
"@[<2>cannot @[apply `%a`@]@ @[to `%a`@],@ expected argument type: \
`%a`@ @[actual: `%a`@]@]"
pp_debug f pp_debug a pp_debug_with_ids ty_arg_f pp_debug_with_ids
ty_a;
db_0_replace_ ~make ty_bod_f ~by:a
| _ ->
Error.errorf
"@[<2>cannot apply %a@ (to %a),@ must have Pi type, but actual type \
is %a@]"
pp_debug f pp_debug a pp_debug ty_f)
| E_app_fold { args = []; _ } -> assert false
| E_app_fold { f; args = a0 :: other_args as args; acc0 } ->
Store.check_e_uid store f;
Store.check_e_uid store acc0;
List.iter (Store.check_e_uid store) args;
let ty_result = ty acc0 in
let ty_a0 = ty a0 in
(* check that all arguments have the same type *)
List.iter
(fun a' ->
let ty' = ty a' in
if not (equal ty_a0 ty') then
Error.errorf
"app_fold: arguments %a@ and %a@ have incompatible types" pp_debug
a0 pp_debug a')
other_args;
(* check that [f a0 acc0] has type [ty_result] *)
let app1 = make (E_app (make (E_app (f, a0)), acc0)) in
if not (equal (ty app1) ty_result) then
Error.errorf
"app_fold: single application `%a`@ has type `%a`,@ but should have \
type %a"
pp_debug app1 pp_debug (ty app1) pp_debug ty_result;
ty_result
| E_pi (_, ty, bod) ->
(* TODO: check the actual triplets for COC *)
(*Fmt.printf "pi %a %a@." pp_debug ty pp_debug bod;*)
Store.check_e_uid store ty;
Store.check_e_uid store bod;
let u = max (universe_of_ty_ ty) (universe_of_ty_ bod) in
make (E_type u)
let ty_assert_false_ () = assert false
(* hashconsing + computing metadata + computing type (for new terms) *)
let rec make_ (store : store) view : term =
let e = { view; ty = T_ty_delayed ty_assert_false_; id = -1; flags = 0 } in
let e2 = Hcons.hashcons store.s_exprs e in
if e == e2 then (
(* new term, compute metadata *)
assert (store.s_uid land store_id_mask == store.s_uid);
(* first, compute type *)
(match e.view with
| E_type i ->
(* cannot force type now, as it's an infinite tower of types.
Instead we will produce the type on demand. *)
let get_ty () = make_ store (E_type (i + 1)) in
e.ty <- T_ty_delayed get_ty
| _ ->
let ty = compute_ty_ store ~make:(make_ store) view in
e.ty <- T_ty ty);
let has_fvars = compute_has_fvars_ e in
e2.flags <-
(compute_db_depth_ e lsl (1 + store_id_bits))
lor (if has_fvars then
1 lsl store_id_bits
else
0)
lor store.s_uid;
Store.check_e_uid store e2
);
e2
let type_of_univ store i : term = make_ store (E_type i)
let type_ store : term = type_of_univ store 0
let var store v : term = make_ store (E_var v)
let var_str store name ~ty : term = var store (Var.make name ty)
let bvar store v : term = make_ store (E_bound_var v)
let bvar_i store i ~ty : term = make_ store (E_bound_var (Bvar.make i ty))
let const store c : term = make_ store (E_const c)
let app store f a = make_ store (E_app (f, a))
let app_l store f l = List.fold_left (app store) f l
let app_fold store ~f ~acc0 args : t =
match args with
| [] -> acc0
| _ -> make_ store (E_app_fold { f; acc0; args })
type cache = t T_int_tbl.t
let create_cache : int -> cache = T_int_tbl.create
(* general substitution, compatible with DB indices. We use this
also to abstract on a free variable, because it subsumes it and
it's better to minimize the number of DB indices manipulations *)
let replace_ ?(cache = create_cache 8) ~make ~recursive e0 ~f : t =
let rec loop k e =
if is_type e then
e
else if not (has_fvars e) then
(* no free variables, cannot change *)
e
else (
try T_int_tbl.find cache (e, k)
with Not_found ->
let r = loop_uncached_ k e in
T_int_tbl.add cache (e, k) r;
r
)
and loop_uncached_ k (e : t) : t =
match f ~recurse:(loop k) e with
| None ->
map_shallow_ e ~make ~f:(fun inb u ->
loop
(if inb then
k + 1
else
k)
u)
| Some u ->
let u = db_shift_ ~make u k in
if recursive then
loop 0 u
else
u
in
loop 0 e0
let subst_ ~make ~recursive e0 (subst : subst) : t =
if Var_.Map.is_empty subst.m then
e0
else
replace_ ~make ~recursive e0 ~f:(fun ~recurse e ->
match view e with
| E_var v ->
(* first, subst in type *)
let v = { v with v_ty = recurse v.v_ty } in
Var_.Map.find_opt v subst.m
| _ -> None)
module DB = struct
let subst_db0 store e ~by : t = db_0_replace_ ~make:(make_ store) e ~by
let shift store t ~by : t =
assert (by >= 0);
db_shift_ ~make:(make_ store) t by
let lam_db ?(var_name = "") store ~var_ty bod : term =
make_ store (E_lam (var_name, var_ty, bod))
let pi_db ?(var_name = "") store ~var_ty bod : term =
make_ store (E_pi (var_name, var_ty, bod))
let abs_on (store : store) (v : var) (e : term) : term =
Store.check_e_uid store v.v_ty;
Store.check_e_uid store e;
if not (is_closed v.v_ty) then
Error.errorf "cannot abstract on variable@ with non closed type %a"
pp_debug v.v_ty;
let db0 = bvar store (Bvar.make 0 v.v_ty) in
let body = db_shift_ ~make:(make_ store) e 1 in
subst_ ~make:(make_ store) ~recursive:false body
{ m = Var_.Map.singleton v db0 }
end
let lam store v bod : term =
let bod' = DB.abs_on store v bod in
DB.lam_db ~var_name:(Var.name v) store ~var_ty:(Var.ty v) bod'
let pi store v bod : term =
let bod' = DB.abs_on store v bod in
DB.pi_db ~var_name:(Var.name v) store ~var_ty:(Var.ty v) bod'
let arrow store a b : term =
let b' = DB.shift store b ~by:1 in
DB.pi_db store ~var_ty:a b'
let arrow_l store args ret = List.fold_right (arrow store) args ret
(* find a name that doesn't capture a variable of [e] *)
let pick_name_ (name0 : string) (e : term) : string =
let rec loop i =
let name =
if i = 0 then
name0
else
Printf.sprintf "%s%d" name0 i
in
if free_vars_iter e |> Iter.exists (fun v -> v.v_name = name) then
loop (i + 1)
else
name
in
loop 0
let open_lambda store e : _ option =
match view e with
| E_lam (name, ty, bod) ->
let name = pick_name_ name bod in
let v = Var.make name ty in
let bod' = DB.subst_db0 store bod ~by:(var store v) in
Some (v, bod')
| _ -> None
let open_lambda_exn store e =
match open_lambda store e with
| Some tup -> tup
| None -> Error.errorf "open-lambda: term is not a lambda:@ %a" pp_debug e
end
include Make_
let map_shallow store ~f e : t = map_shallow_ ~make:(make_ store) ~f e
(* re-export some internal things *)
module Internal_ = struct
type nonrec cache = cache
let create_cache = create_cache
let replace_ ?cache store ~recursive t ~f =
replace_ ?cache ~make:(make_ store) ~recursive t ~f
let subst_ store ~recursive t subst =
subst_ ~make:(make_ store) ~recursive t subst
end