sidekick/solver/solver_types.ml
Guillaume Bury f88a5dd514 [bugfix/minor] Ensure generativity of solver_types
This ensures that the same solver_types module is not reused
for two different solvers, which would be problematic.
Marked minor because of the low use of multiple instances of a solver.
2016-04-15 13:30:46 +02:00

309 lines
8.2 KiB
OCaml
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(**************************************************************************)
(* *)
(* Cubicle *)
(* Combining model checking algorithms and SMT solvers *)
(* *)
(* Sylvain Conchon and Alain Mebsout *)
(* Universite Paris-Sud 11 *)
(* *)
(* Copyright 2011. This file is distributed under the terms of the *)
(* Apache Software License version 2.0 *)
(* *)
(**************************************************************************)
open Printf
module type S = Solver_types_intf.S
(* Solver types for McSat Solving *)
(* ************************************************************************ *)
module McMake (E : Expr_intf.S)(Dummy : sig end) = struct
(* Flag for Mcsat v.s Pure Sat *)
let mcsat = true
type term = E.Term.t
type formula = E.Formula.t
type proof = E.proof
type lit = {
lid : int;
term : term;
mutable l_level : int;
mutable l_weight : float;
mutable assigned : term option;
}
type var = {
vid : int;
pa : atom;
na : atom;
mutable seen : bool;
mutable v_level : int;
mutable v_weight : float;
mutable reason : reason option;
}
and atom = {
aid : int;
var : var;
neg : atom;
lit : formula;
mutable is_true : bool;
mutable watched : clause Vec.t;
}
and clause = {
name : string;
tag : int option;
atoms : atom Vec.t;
learnt : bool;
c_level : int;
mutable cpremise : premise;
mutable activity : float;
mutable removed : bool;
}
and reason =
| Decision
| Bcp of clause
| Semantic of int
and premise =
| Lemma of proof
| History of clause list
type elt = (lit, var) Either.t
(* Dummy values *)
let dummy_lit = E.dummy
let rec dummy_var =
{ vid = -101;
pa = dummy_atom;
na = dummy_atom;
seen = false;
v_level = -1;
v_weight = -1.;
reason = None;
}
and dummy_atom =
{ var = dummy_var;
lit = dummy_lit;
watched = Obj.magic 0;
(* should be [Vec.make_empty dummy_clause]
but we have to break the cycle *)
neg = dummy_atom;
is_true = false;
aid = -102 }
let dummy_clause =
{ name = "";
tag = None;
atoms = Vec.make_empty dummy_atom;
activity = -1.;
removed = false;
c_level = -1;
learnt = false;
cpremise = History [] }
let () =
dummy_atom.watched <- Vec.make_empty dummy_clause
(* Constructors *)
module MF = Hashtbl.Make(E.Formula)
module MT = Hashtbl.Make(E.Term)
let f_map = MF.create 4096
let t_map = MT.create 4096
let vars = Vec.make 107 (Either.mk_right dummy_var)
let nb_elt () = Vec.size vars
let get_elt i = Vec.get vars i
let iter_elt f = Vec.iter f vars
let cpt_mk_var = ref 0
let make_semantic_var t =
try MT.find t_map t
with Not_found ->
let res = {
lid = !cpt_mk_var;
term = t;
l_weight = 1.;
l_level = -1;
assigned = None;
} in
incr cpt_mk_var;
MT.add t_map t res;
Vec.push vars (Either.mk_left res);
res
let make_boolean_var =
fun lit ->
let lit, negated = E.norm lit in
try MF.find f_map lit, negated
with Not_found ->
let cpt_fois_2 = !cpt_mk_var lsl 1 in
let rec var =
{ vid = !cpt_mk_var;
pa = pa;
na = na;
seen = false;
v_level = -1;
v_weight = 0.;
reason = None;
}
and pa =
{ var = var;
lit = lit;
watched = Vec.make 10 dummy_clause;
neg = na;
is_true = false;
aid = cpt_fois_2 (* aid = vid*2 *) }
and na =
{ var = var;
lit = E.neg lit;
watched = Vec.make 10 dummy_clause;
neg = pa;
is_true = false;
aid = cpt_fois_2 + 1 (* aid = vid*2+1 *) } in
MF.add f_map lit var;
incr cpt_mk_var;
Vec.push vars (Either.mk_right var);
var, negated
let add_term t = make_semantic_var t
let add_atom lit =
let var, negated = make_boolean_var lit in
if negated then var.na else var.pa
let make_clause ?tag name ali sz_ali is_learnt premise lvl =
let atoms = Vec.from_list ali sz_ali dummy_atom in
{ name = name;
tag = tag;
atoms = atoms;
removed = false;
learnt = is_learnt;
c_level = lvl;
activity = 0.;
cpremise = premise}
let empty_clause = make_clause "Empty" [] 0 false (History []) 0
(* Decisions & propagations *)
type t = (lit, atom) Either.t
let of_lit = Either.mk_left
let of_atom = Either.mk_right
let destruct = Either.destruct
(* Elements *)
let elt_of_lit = Either.mk_left
let elt_of_var = Either.mk_right
let get_elt_id = function
| Either.Left l -> l.lid | Either.Right v -> v.vid
let get_elt_level = function
| Either.Left l -> l.l_level | Either.Right v -> v.v_level
let get_elt_weight = function
| Either.Left l -> l.l_weight | Either.Right v -> v.v_weight
let set_elt_level e lvl = match e with
| Either.Left l -> l.l_level <- lvl | Either.Right v -> v.v_level <- lvl
let set_elt_weight e w = match e with
| Either.Left l -> l.l_weight <- w | Either.Right v -> v.v_weight <- w
(* Name generation *)
let fresh_lname =
let cpt = ref 0 in
fun () -> incr cpt; "L" ^ (string_of_int !cpt)
let fresh_hname =
let cpt = ref 0 in
fun () -> incr cpt; "H" ^ (string_of_int !cpt)
let fresh_tname =
let cpt = ref 0 in
fun () -> incr cpt; "T" ^ (string_of_int !cpt)
let fresh_name =
let cpt = ref 0 in
fun () -> incr cpt; "C" ^ (string_of_int !cpt)
(* Pretty printing for atoms and clauses *)
let print_lit fmt v = E.Term.print fmt v.term
let print_atom fmt a = E.Formula.print fmt a.lit
let print_atoms fmt v =
if Vec.size v = 0 then
Format.fprintf fmt ""
else begin
print_atom fmt (Vec.get v 0);
if (Vec.size v) > 1 then begin
for i = 1 to (Vec.size v) - 1 do
Format.fprintf fmt " %a" print_atom (Vec.get v i)
done
end
end
let print_clause fmt c =
Format.fprintf fmt "%s : %a" c.name print_atoms c.atoms
(* Complete debug printing *)
let sign a = if a == a.var.pa then "" else "-"
let level a =
match a.var.v_level, a.var.reason with
| n, _ when n < 0 -> sprintf "%%"
| n, None -> sprintf "%d" n
| n, Some Decision -> sprintf "@@%d" n
| n, Some Bcp c -> sprintf "->%d/%s" n c.name
| n, Some Semantic lvl -> sprintf "::%d/%d" n lvl
let value a =
if a.is_true then sprintf "[T%s]" (level a)
else if a.neg.is_true then sprintf "[F%s]" (level a)
else "[]"
let pp_premise out = function
| History v -> List.iter (fun {name=name} -> Format.fprintf out "%s,@," name) v
| Lemma _ -> Format.fprintf out "th_lemma"
let pp_assign out = function
| None -> ()
| Some t -> Format.fprintf out "[assignment: %a]" E.Term.print t
let pp_lit out v =
Format.fprintf out "%d [lit:%a]%a"
(v.lid+1) E.Term.print v.term pp_assign v.assigned
let pp_atom out a =
Format.fprintf out "%s%d%s[lit:%a]"
(sign a) (a.var.vid+1) (value a) E.Formula.print a.lit
let pp_atoms_vec out vec =
Vec.print ~sep:"; " pp_atom out vec
let pp_clause out {name=name; atoms=arr; cpremise=cp; learnt=learnt} =
Format.fprintf out "%s%s{ %a} cpremise={{%a}}"
name (if learnt then "!" else ":") pp_atoms_vec arr pp_premise cp
end
(* Solver types for pure SAT Solving *)
(* ************************************************************************ *)
module SatMake (E : Formula_intf.S)(Dummy : sig end) = struct
include McMake(struct
include E
module Term = E
module Formula = E
end)(struct end)
let mcsat = false
end