mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-06 03:05:31 -05:00
Uses a more complete tactic to go from or-separated clause to the negation-implication encoding of clauses used by the coq backend. Also uses a better suffix for temporary clauses than "_or".
183 lines
5.6 KiB
OCaml
183 lines
5.6 KiB
OCaml
(*
|
|
MSAT is free software, using the Apache license, see file LICENSE
|
|
Copyright 2015 Guillaume Bury
|
|
*)
|
|
|
|
module type S = Backend_intf.S
|
|
|
|
module type Arg = sig
|
|
|
|
type atom
|
|
|
|
type hyp
|
|
type lemma
|
|
type assumption
|
|
|
|
val print_atom : Format.formatter -> atom -> unit
|
|
|
|
val prove_hyp : Format.formatter -> string -> hyp -> unit
|
|
val prove_lemma : Format.formatter -> string -> lemma -> unit
|
|
val prove_assumption : Format.formatter -> string -> assumption -> unit
|
|
|
|
end
|
|
|
|
module Make(S : Res.S)(A : Arg with type atom := S.atom
|
|
and type hyp := S.clause
|
|
and type lemma := S.clause
|
|
and type assumption := S.clause) = struct
|
|
|
|
module M = Map.Make(struct
|
|
type t = S.St.atom
|
|
let compare a b = compare a.S.St.aid b.S.St.aid
|
|
end)
|
|
|
|
let name c = c.S.St.name
|
|
let name_tmp c = c.S.St.name ^ "_tmp"
|
|
|
|
let pp_atom fmt a =
|
|
if a == S.St.(a.var.pa) then
|
|
Format.fprintf fmt "~ %a" A.print_atom a
|
|
else
|
|
Format.fprintf fmt "~ ~ %a" A.print_atom a.S.St.neg
|
|
|
|
let pp_clause fmt c =
|
|
let rec aux fmt (a, i) =
|
|
if i < Array.length a then
|
|
Format.fprintf fmt "@[<h>%a ->@ @]%a"
|
|
pp_atom a.(i) aux (a, i + 1)
|
|
else
|
|
Format.fprintf fmt "False"
|
|
in
|
|
Format.fprintf fmt "@[<hov 1>(%a)@]" aux (c.S.St.atoms, 0)
|
|
|
|
let pp_clause_intro fmt c =
|
|
let rec aux fmt acc a i =
|
|
if i >= Array.length a then acc
|
|
else begin
|
|
let name = Format.sprintf "A%d" i in
|
|
Format.fprintf fmt "%s@ " name;
|
|
aux fmt (M.add a.(i) name acc) a (i + 1)
|
|
end
|
|
in
|
|
Format.fprintf fmt "intros @[<hov>";
|
|
let m = aux fmt M.empty c.S.St.atoms 0 in
|
|
Format.fprintf fmt "@].@\n";
|
|
m
|
|
|
|
let clausify fmt clause =
|
|
Format.fprintf fmt "assert (%s: %a).@\ntauto. clear %s.@\n"
|
|
(name clause) pp_clause clause (name_tmp clause)
|
|
|
|
let elim_duplicate fmt goal hyp _ =
|
|
(** Printing info comment in coq *)
|
|
Format.fprintf fmt "(* Eliminating doublons.@\n";
|
|
Format.fprintf fmt " Goal : %s ; Hyp : %s *)@\n" (name goal) (name hyp);
|
|
(** Use 'assert' to introduce the clause we want to prove *)
|
|
Format.fprintf fmt "assert (%s: %a).@\n" (name goal) pp_clause goal;
|
|
(** Prove the goal: intro the atoms, then use them with the hyp *)
|
|
let m = pp_clause_intro fmt goal in
|
|
Format.fprintf fmt "exact (%s%a).@\n"
|
|
(name hyp) (fun fmt -> Array.iter (fun atom ->
|
|
Format.fprintf fmt " %s" (M.find atom m))) hyp.S.St.atoms
|
|
|
|
let resolution fmt goal hyp1 hyp2 atom =
|
|
let a = S.St.(atom.var.pa) in
|
|
let h1, h2 =
|
|
if Array.memq a hyp1.S.St.atoms then hyp1, hyp2
|
|
else (assert (Array.memq a hyp2.S.St.atoms); hyp2, hyp1)
|
|
in
|
|
(** Print some debug info *)
|
|
Format.fprintf fmt "(* Clausal resolution.@\n";
|
|
Format.fprintf fmt " Goal : %s ; Hyps : %s, %s *)@\n"
|
|
(name goal) (name h1) (name h2);
|
|
(** use a cut to introduce the clause we want to prove
|
|
*except* if it is the last clause, i.e the empty clause because
|
|
we already want to prove 'False',
|
|
no need to introduce it as a subgoal *)
|
|
if Array.length goal.S.St.atoms <> 0 then
|
|
Format.fprintf fmt "assert (%s: %a).@\n" (name goal) pp_clause goal;
|
|
(** Prove the goal: intro the axioms, then perform resolution *)
|
|
let m = pp_clause_intro fmt goal in
|
|
Format.fprintf fmt "exact (%s%a).@\n"
|
|
(name h1) (fun fmt -> Array.iter (fun b ->
|
|
if b == a then begin
|
|
Format.fprintf fmt " (fun p => %s%a)"
|
|
(name h2) (fun fmt -> (Array.iter (fun c ->
|
|
if c == a.S.St.neg then
|
|
Format.fprintf fmt " (fun np => np p)"
|
|
else
|
|
Format.fprintf fmt " %s" (M.find c m)))
|
|
) h2.S.St.atoms
|
|
end else
|
|
Format.fprintf fmt " %s" (M.find b m))
|
|
) h1.S.St.atoms
|
|
|
|
|
|
let prove_node t fmt node =
|
|
let clause = node.S.conclusion in
|
|
match node.S.step with
|
|
| S.Hypothesis ->
|
|
A.prove_hyp fmt (name_tmp clause) clause;
|
|
clausify fmt clause
|
|
| S.Assumption ->
|
|
A.prove_assumption fmt (name_tmp clause) clause;
|
|
clausify fmt clause
|
|
| S.Lemma _ ->
|
|
A.prove_lemma fmt (name_tmp clause) clause;
|
|
clausify fmt clause
|
|
| S.Duplicate (p, l) ->
|
|
let c = (S.expand p).S.conclusion in
|
|
elim_duplicate fmt clause c l
|
|
| S.Resolution (p1, p2, a) ->
|
|
let c1 = (S.expand p1).S.conclusion in
|
|
let c2 = (S.expand p2).S.conclusion in
|
|
resolution fmt clause c1 c2 a
|
|
|
|
(* Here the main idea is to always try and have exactly
|
|
one goal to prove, i.e False. So each *)
|
|
let print fmt p =
|
|
let h = S.H.create 4013 in
|
|
let aux () node =
|
|
Format.fprintf fmt "%a@\n@\n" (prove_node h) node
|
|
in
|
|
Format.fprintf fmt "(* Coq proof generated by mSAT*)@\n@\n";
|
|
S.fold aux () p
|
|
|
|
end
|
|
|
|
|
|
module Simple(S : Res.S)
|
|
(A : Arg with type atom := S.St.formula
|
|
and type hyp = S.St.formula list
|
|
and type lemma := S.lemma
|
|
and type assumption := S.St.formula) =
|
|
Make(S)(struct
|
|
|
|
(* Some helpers *)
|
|
let lit a = a.S.St.lit
|
|
|
|
let get_assumption c =
|
|
match S.to_list c with
|
|
| [ x ] -> x
|
|
| _ -> assert false
|
|
|
|
let get_lemma c =
|
|
match c.S.St.cpremise with
|
|
| S.St.Lemma p -> p
|
|
| _ -> assert false
|
|
|
|
(* Actual functions *)
|
|
let print_atom fmt a =
|
|
A.print_atom fmt a.S.St.lit
|
|
|
|
let prove_hyp fmt name c =
|
|
A.prove_hyp fmt name (List.map lit (S.to_list c))
|
|
|
|
let prove_lemma fmt name c =
|
|
A.prove_lemma fmt name (get_lemma c)
|
|
|
|
let prove_assumption fmt name c =
|
|
A.prove_assumption fmt name (lit (get_assumption c))
|
|
|
|
end)
|
|
|