mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-09 12:45:48 -05:00
282 lines
8.4 KiB
OCaml
282 lines
8.4 KiB
OCaml
(*
|
|
MSAT is free software, using the Apache license, see file LICENSE
|
|
Copyright 2014 Guillaume Bury
|
|
Copyright 2014 Simon Cruanes
|
|
*)
|
|
|
|
module type S = Res_intf.S
|
|
|
|
module Make(St : Solver_types.S)(Proof : sig type proof end) = struct
|
|
|
|
(* Type definitions *)
|
|
type lemma = Proof.proof
|
|
type clause = St.clause
|
|
type atom = St.atom
|
|
type int_cl = clause * St.atom list
|
|
|
|
type node =
|
|
| Assumption
|
|
| Lemma of lemma
|
|
| Resolution of atom * int_cl * int_cl
|
|
(* lits, c1, c2 with lits the literals used to resolve c1 and c2 *)
|
|
|
|
exception Resolution_error of string
|
|
|
|
(* Proof graph *)
|
|
let hash_cl cl =
|
|
Hashtbl.hash (List.map (fun a -> St.(a.aid)) cl)
|
|
|
|
let equal_cl cl_c cl_d =
|
|
try
|
|
List.for_all2 (==) cl_c cl_d
|
|
with Invalid_argument _ ->
|
|
false
|
|
|
|
module H = Hashtbl.Make(struct
|
|
type t = St.atom list
|
|
let hash = hash_cl
|
|
let equal = equal_cl
|
|
end)
|
|
let proof : node H.t = H.create 1007;;
|
|
|
|
(* Misc functions *)
|
|
let equal_atoms a b = St.(a.aid) = St.(b.aid)
|
|
let compare_atoms a b = Pervasives.compare St.(a.aid) St.(b.aid)
|
|
|
|
let _c = ref 0
|
|
let fresh_pcl_name () = incr _c; "P" ^ (string_of_int !_c)
|
|
|
|
(* Printing functions *)
|
|
let print_atom fmt a =
|
|
Format.fprintf fmt "%s%d" St.(if a.var.pa == a then "" else "-") St.(a.var.vid + 1)
|
|
|
|
let rec print_cl fmt = function
|
|
| [] -> Format.fprintf fmt "[]"
|
|
| [a] -> print_atom fmt a
|
|
| a :: ((_ :: _) as r) -> Format.fprintf fmt "%a \\/ %a" print_atom a print_cl r
|
|
|
|
(* Compute resolution of 2 clauses *)
|
|
let resolve l =
|
|
let rec aux resolved acc = function
|
|
| [] -> resolved, acc
|
|
| [a] -> resolved, a :: acc
|
|
| a :: b :: r ->
|
|
if equal_atoms a b then
|
|
aux resolved (a :: acc) r
|
|
else if equal_atoms St.(a.neg) b then
|
|
aux (St.(a.var.pa) :: resolved) acc r
|
|
else
|
|
aux resolved (a :: acc) (b :: r)
|
|
in
|
|
let resolved, new_clause = aux [] [] l in
|
|
resolved, List.rev new_clause
|
|
|
|
let to_list c =
|
|
let v = St.(c.atoms) in
|
|
let l = ref [] in
|
|
for i = 0 to Vec.size v - 1 do
|
|
l := (Vec.get v i) :: !l
|
|
done;
|
|
let l, res = resolve (List.sort_uniq compare_atoms !l) in
|
|
if l <> [] then
|
|
raise (Resolution_error "Input cause is a tautology");
|
|
res
|
|
|
|
(* Adding new proven clauses *)
|
|
let is_proved c = H.mem proof c
|
|
let is_proven c = is_proved (to_list c)
|
|
|
|
let add_res (c, cl_c) (d, cl_d) =
|
|
Log.debug 7 "Resolving clauses :";
|
|
Log.debug 7 " %a" St.pp_clause c;
|
|
Log.debug 7 " %a" St.pp_clause d;
|
|
let l = List.merge compare_atoms cl_c cl_d in
|
|
let resolved, new_clause = resolve l in
|
|
match resolved with
|
|
| [] -> raise (Resolution_error "No literal to resolve over")
|
|
| [a] ->
|
|
H.add proof new_clause (Resolution (a, (c, cl_c), (d, cl_d)));
|
|
let new_c = St.make_clause (fresh_pcl_name ()) new_clause (List.length new_clause) true [c; d] in
|
|
Log.debug 5 "New clause : %a" St.pp_clause new_c;
|
|
new_c, new_clause
|
|
| _ -> raise (Resolution_error "Resolved to a tautology")
|
|
|
|
let add_clause cl l = (* We assume that all clauses in c.cpremise are already proved ! *)
|
|
match l with
|
|
| a :: ((_ :: _) as r) ->
|
|
let new_c, new_cl = List.fold_left add_res a r in
|
|
if not (equal_cl cl new_cl) then begin
|
|
Log.debug 0 "Expected the following clauses to be equal :";
|
|
Log.debug 0 "expected : %s" (Log.on_fmt print_cl cl);
|
|
Log.debug 0 "found : %a" St.pp_clause new_c;
|
|
assert false
|
|
end
|
|
| _ -> assert false
|
|
|
|
let need_clause (c, cl) =
|
|
if is_proved cl then
|
|
[]
|
|
else if not St.(c.learnt) then begin
|
|
Log.debug 8 "Adding to hyps : %a" St.pp_clause c;
|
|
H.add proof cl Assumption;
|
|
[]
|
|
end else
|
|
St.(c.cpremise)
|
|
|
|
let rec do_clause = function
|
|
| [] -> ()
|
|
| c :: r ->
|
|
let cl = to_list c in
|
|
let l = need_clause (c, cl) in
|
|
if l = [] then (* c is either an asusmption, or already proved *)
|
|
do_clause r
|
|
else
|
|
let l' = List.rev_map (fun c -> c, to_list c) l in
|
|
let to_prove = List.filter (fun (_, cl) -> not (is_proved cl)) l' in
|
|
let to_prove = List.rev_map fst to_prove in
|
|
if to_prove = [] then begin
|
|
(* See wether we can prove c right now *)
|
|
add_clause cl l';
|
|
do_clause r
|
|
end else
|
|
(* Or if we have to prove some other clauses first *)
|
|
do_clause (to_prove @ (c :: r))
|
|
|
|
let prove c =
|
|
Log.debug 3 "Proving : %a" St.pp_clause c;
|
|
do_clause [c];
|
|
Log.debug 3 "Proved : %a" St.pp_clause c
|
|
|
|
let clause_unit a = St.(
|
|
let l = if a.is_true then [a] else [a.neg] in
|
|
make_clause (fresh_pcl_name ()) l 1 true a.var.vpremise
|
|
)
|
|
|
|
let rec prove_unsat_cl (c, cl) = match cl with
|
|
| [] -> true
|
|
| a :: r ->
|
|
try
|
|
Log.debug 2 "Eliminating %a in %a" St.pp_atom a St.pp_clause c;
|
|
let d = match St.(a.var.level, a.var.reason) with
|
|
| 0, Some d -> d
|
|
| 0, None -> clause_unit a
|
|
| _ -> raise Exit
|
|
in
|
|
prove d;
|
|
let cl_d = to_list d in
|
|
prove_unsat_cl (add_res (c, cl) (d, cl_d))
|
|
with Exit -> false
|
|
|
|
exception Cannot
|
|
let assert_can_prove_unsat c =
|
|
Log.debug 1 "=================== Proof =====================";
|
|
prove c;
|
|
if not (prove_unsat_cl (c, to_list c)) then raise Cannot
|
|
|
|
(* Interface exposed *)
|
|
type proof_node = {
|
|
conclusion : clause;
|
|
step : step;
|
|
}
|
|
and proof = unit -> proof_node
|
|
and step =
|
|
| Hypothesis
|
|
| Lemma of lemma
|
|
| Resolution of proof * proof * atom
|
|
|
|
let rec return_proof (c, cl) () =
|
|
Log.debug 8 "Returning proof for : %a" St.pp_clause c;
|
|
let st = match H.find proof cl with
|
|
| Assumption -> Hypothesis
|
|
| Lemma l -> Lemma l
|
|
| Resolution (a, cl_c, cl_d) ->
|
|
Resolution (return_proof cl_c, return_proof cl_d, a)
|
|
in
|
|
{ conclusion = c; step = st }
|
|
|
|
let prove_unsat c =
|
|
assert_can_prove_unsat c;
|
|
return_proof (St.empty_clause, [])
|
|
|
|
(* Print proof graph *)
|
|
let _i = ref 0
|
|
let new_id () = incr _i; "id_" ^ (string_of_int !_i)
|
|
|
|
let ids : (clause, (bool * string)) Hashtbl.t = Hashtbl.create 1007;;
|
|
let c_id c =
|
|
try
|
|
snd (Hashtbl.find ids c)
|
|
with Not_found ->
|
|
let id = new_id () in
|
|
Hashtbl.add ids c (false, id);
|
|
id
|
|
|
|
let clear_ids () =
|
|
Hashtbl.iter (fun c (_, id) -> Hashtbl.replace ids c (false, id)) ids
|
|
|
|
let is_drawn c =
|
|
try
|
|
fst (Hashtbl.find ids c)
|
|
with Not_found ->
|
|
false
|
|
|
|
let has_drawn c =
|
|
assert (Hashtbl.mem ids c);
|
|
let b, id = Hashtbl.find ids c in
|
|
assert (not b);
|
|
Hashtbl.replace ids c (true, id)
|
|
|
|
let print_clause fmt c = print_cl fmt (to_list c)
|
|
|
|
let print_dot_rule opt f arg fmt cl =
|
|
Format.fprintf fmt "%s [shape=plaintext, label=<<TABLE %s %s>%a</TABLE>>];@\n"
|
|
(c_id cl) "BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\"" opt f arg
|
|
|
|
let print_dot_edge id_c fmt id_d =
|
|
Format.fprintf fmt "%s -> %s;@\n" id_c id_d
|
|
|
|
let print_res_atom id fmt a =
|
|
Format.fprintf fmt "%s [label=\"%a\"]" id print_atom a
|
|
|
|
let print_res_node concl p1 p2 fmt atom =
|
|
let id = new_id () in
|
|
Format.fprintf fmt "%a;@\n%a%a%a"
|
|
(print_res_atom id) atom
|
|
(print_dot_edge (c_id concl)) id
|
|
(print_dot_edge id) (c_id p1)
|
|
(print_dot_edge id) (c_id p2)
|
|
|
|
let rec print_dot_proof fmt p =
|
|
match p.step with
|
|
| Hypothesis ->
|
|
let aux fmt () =
|
|
Format.fprintf fmt "<TR><TD colspan=\"2\">%a</TD></TR><TR><TD>Hypothesis</TD><TD>%s</TD></TR>"
|
|
print_clause p.conclusion St.(p.conclusion.name)
|
|
in
|
|
print_dot_rule "BGCOLOR=\"LIGHTBLUE\"" aux () fmt p.conclusion
|
|
| Lemma _ ->
|
|
let aux fmt () =
|
|
Format.fprintf fmt "<TR><TD colspan=\"2\"BGCOLOR=\"LIGHTBLUE\">%a</TD></TR><TR><TD>Lemma</TD><TD>%s</TD></TR>"
|
|
print_clause p.conclusion St.(p.conclusion.name)
|
|
in
|
|
print_dot_rule "BGCOLOR=\"RED\"" aux () fmt p.conclusion
|
|
| Resolution (proof1, proof2, a) ->
|
|
let aux fmt () =
|
|
Format.fprintf fmt "<TR><TD colspan=\"2\">%a</TD></TR><TR><TD>%s</TD><TD>%s</TD></TR>"
|
|
print_clause p.conclusion
|
|
"Resolution" St.(p.conclusion.name)
|
|
in
|
|
let p1 = proof1 () in
|
|
let p2 = proof2 () in
|
|
Format.fprintf fmt "%a%a%a%a"
|
|
(print_dot_rule "" aux ()) p.conclusion
|
|
(print_res_node p.conclusion p1.conclusion p2.conclusion) a
|
|
print_dot_proof p1
|
|
print_dot_proof p2
|
|
|
|
let print_dot fmt proof =
|
|
clear_ids ();
|
|
Format.fprintf fmt "digraph proof {@\n%a@\n}@." print_dot_proof (proof ())
|
|
|
|
end
|
|
|