mirror of
https://github.com/c-cube/ocaml-containers.git
synced 2025-12-06 03:05:28 -05:00
use 32-bits and regular integers for popcount in CCHashTrie
This commit is contained in:
parent
47414c7f40
commit
895c8a73d9
2 changed files with 103 additions and 78 deletions
|
|
@ -118,76 +118,78 @@ end
|
|||
from https://en.wikipedia.org/wiki/Hamming_weight
|
||||
|
||||
//This uses fewer arithmetic operations than any other known
|
||||
//implementation on machines with fast multiplication.
|
||||
//It uses 12 arithmetic operations, one of which is a multiply.
|
||||
int popcount_3(uint64_t x) {
|
||||
//implementation on machines with slow multiplication.
|
||||
//It uses 17 arithmetic operations.
|
||||
int popcount_2(uint64_t x) {
|
||||
x -= (x >> 1) & m1; //put count of each 2 bits into those 2 bits
|
||||
x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
|
||||
x = (x + (x >> 4)) & m4; //put count of each 8 bits into those 8 bits
|
||||
return (x * h01)>>56; //returns left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...
|
||||
x += x >> 8; //put count of each 16 bits into their lowest 8 bits
|
||||
x += x >> 16; //put count of each 32 bits into their lowest 8 bits
|
||||
x += x >> 32; //put count of each 64 bits into their lowest 8 bits
|
||||
return x & 0x7f;
|
||||
}
|
||||
*)
|
||||
|
||||
let popcount64 (b:int64) =
|
||||
let open Int64 in
|
||||
let b = sub b (logand (shift_right_logical b 1) 0x5555555555555555L) in
|
||||
let b = add (logand b 0x3333333333333333L)
|
||||
(logand (shift_right_logical b 2) 0x3333333333333333L) in
|
||||
let b = logand (add b (shift_right_logical b 4)) 0x0F0F0F0F0F0F0F0FL in
|
||||
let b = shift_right_logical (mul b 0x0101010101010101L) 56 in
|
||||
Int64.to_int b
|
||||
32-bits popcount. int64 is too slow, and there is not use trying to deal
|
||||
with 32 bit platforms by defining popcount-16, as there are integer literals
|
||||
here that will not compile on 32-bits.
|
||||
*)
|
||||
let popcount b =
|
||||
let b = b - ((b lsr 1) land 0x55555555) in
|
||||
let b = (b land 0x33333333) + ((b lsr 2) land 0x33333333) in
|
||||
let b = (b + (b lsr 4)) land 0x0f0f0f0f in
|
||||
let b = b + (b lsr 8) in
|
||||
let b = b + (b lsr 16) in
|
||||
b land 0x3f
|
||||
|
||||
(*$T
|
||||
popcount64 5L = 2
|
||||
popcount64 256L = 1
|
||||
popcount64 255L = 8
|
||||
popcount64 0xFFFFFFFFL = 32
|
||||
popcount64 0xFFFFFFFFFFFFFFFFL = 64
|
||||
popcount 5 = 2
|
||||
popcount 256 = 1
|
||||
popcount 255 = 8
|
||||
popcount 0xFFFF = 16
|
||||
popcount 0xFF1F = 13
|
||||
popcount 0xFFFFFFFF = 32
|
||||
*)
|
||||
|
||||
(*$Q
|
||||
Q.int (fun i -> \
|
||||
let i = Int64.of_int i in popcount64 i <= 64)
|
||||
Q.int (fun i -> let i = i land (1 lsl 32) in popcount i <= 32)
|
||||
*)
|
||||
|
||||
(* sparse array, using a bitfield and POPCOUNT *)
|
||||
module A_SPARSE : FIXED_ARRAY = struct
|
||||
type 'a t = {
|
||||
bits: int64;
|
||||
bits: int;
|
||||
arr: 'a array;
|
||||
empty: 'a;
|
||||
}
|
||||
|
||||
let length_log = 6
|
||||
let length_log = 5
|
||||
let length = 1 lsl length_log
|
||||
|
||||
let popcount = popcount64
|
||||
|
||||
let create ~empty = { bits=0L; arr= [| |]; empty; }
|
||||
let create ~empty = { bits=0; arr= [| |]; empty; }
|
||||
|
||||
let get a i =
|
||||
let open Int64 in
|
||||
let idx = shift_left 1L i in
|
||||
if logand a.bits idx = 0L
|
||||
let idx = 1 lsl i in
|
||||
if a.bits land idx = 0
|
||||
then a.empty
|
||||
else
|
||||
let real_idx =popcount (logand a.bits (sub idx 1L)) in
|
||||
let real_idx = popcount (a.bits land (idx- 1)) in
|
||||
a.arr.(real_idx)
|
||||
|
||||
let set a i x =
|
||||
let open Int64 in
|
||||
let idx = shift_left 1L i in
|
||||
let real_idx = popcount (logand a.bits (sub idx 1L)) in
|
||||
if logand a.bits idx = 0L
|
||||
let idx = 1 lsl i in
|
||||
let real_idx = popcount (a.bits land (idx -1)) in
|
||||
if a.bits land idx = 0
|
||||
then (
|
||||
(* insert at [real_idx] in a new array *)
|
||||
let bits = logor a.bits idx in
|
||||
let arr = Array.init (Array.length a.arr + 1)
|
||||
(fun j ->
|
||||
if j<real_idx then a.arr.(j)
|
||||
else if j=real_idx then x
|
||||
else a.arr.(j-1)
|
||||
) in
|
||||
let bits = a.bits lor idx in
|
||||
let n = Array.length a.arr in
|
||||
let arr = Array.make (n+1) a.empty in
|
||||
arr.(real_idx) <- x;
|
||||
if real_idx>0
|
||||
then Array.blit a.arr 0 arr 0 real_idx;
|
||||
if real_idx<n
|
||||
then Array.blit a.arr real_idx arr (real_idx+1) (n-real_idx);
|
||||
{a with bits; arr}
|
||||
) else (
|
||||
(* replace element at [real_idx] *)
|
||||
|
|
@ -197,21 +199,21 @@ module A_SPARSE : FIXED_ARRAY = struct
|
|||
)
|
||||
|
||||
let update a i f =
|
||||
let open Int64 in
|
||||
let idx = shift_left 1L i in
|
||||
let real_idx = popcount (logand a.bits (sub idx 1L)) in
|
||||
if logand a.bits idx = 0L
|
||||
let idx = 1 lsl i in
|
||||
let real_idx = popcount (a.bits land (idx -1)) in
|
||||
if a.bits land idx = 0
|
||||
then (
|
||||
(* not present *)
|
||||
let x = f a.empty in
|
||||
(* insert at [real_idx] in a new array *)
|
||||
let bits = logor a.bits idx in
|
||||
let arr = Array.init (Array.length a.arr + 1)
|
||||
(fun j ->
|
||||
if j<real_idx then a.arr.(j)
|
||||
else if j=real_idx then x
|
||||
else a.arr.(j-1)
|
||||
) in
|
||||
let bits = a.bits lor idx in
|
||||
let n = Array.length a.arr in
|
||||
let arr = Array.make (n+1) a.empty in
|
||||
arr.(real_idx) <- x;
|
||||
if real_idx>0
|
||||
then Array.blit a.arr 0 arr 0 real_idx;
|
||||
if real_idx<n
|
||||
then Array.blit a.arr real_idx arr (real_idx+1) (n-real_idx);
|
||||
{a with bits; arr}
|
||||
) else (
|
||||
let x = f a.arr.(real_idx) in
|
||||
|
|
@ -222,18 +224,19 @@ module A_SPARSE : FIXED_ARRAY = struct
|
|||
)
|
||||
|
||||
let remove ~empty:_ a i =
|
||||
let open Int64 in
|
||||
let idx = shift_left 1L i in
|
||||
let real_idx = popcount (logand a.bits (sub idx 1L)) in
|
||||
if logand a.bits idx = 0L
|
||||
let idx = 1 lsl i in
|
||||
let real_idx = popcount (a.bits land (idx -1)) in
|
||||
if a.bits land idx = 0
|
||||
then a (* not present *)
|
||||
else (
|
||||
(* remove at [real_idx] *)
|
||||
let bits = logand a.bits (lognot idx) in
|
||||
let arr = Array.init (Array.length a.arr - 1)
|
||||
(fun j ->
|
||||
if j>= real_idx then a.arr.(j+1) else a.arr.(j)
|
||||
) in
|
||||
let bits = a.bits land (lnot idx) in
|
||||
let n = Array.length a.arr in
|
||||
let arr = Array.make (n-1) a.empty in
|
||||
if real_idx > 0
|
||||
then Array.blit a.arr 0 arr 0 real_idx;
|
||||
if real_idx+1 < n
|
||||
then Array.blit a.arr (real_idx+1) arr real_idx (n-real_idx-1);
|
||||
{a with bits; arr}
|
||||
)
|
||||
|
||||
|
|
@ -278,6 +281,7 @@ module Make(Key : KEY)
|
|||
|
||||
type 'a t =
|
||||
| E
|
||||
| S of Hash.t * key * 'a (* single pair *)
|
||||
| L of Hash.t * 'a leaf (* same hash for all elements *)
|
||||
| N of 'a leaf * 'a t A.t (* leaf for hash=0, subnodes *)
|
||||
|
||||
|
|
@ -291,6 +295,7 @@ module Make(Key : KEY)
|
|||
let is_empty = function
|
||||
| E -> true
|
||||
| L (_, Nil) -> assert false
|
||||
| S _
|
||||
| L _
|
||||
| N _ -> false
|
||||
|
||||
|
|
@ -305,6 +310,7 @@ module Make(Key : KEY)
|
|||
|
||||
let rec get_exn_ k ~h m = match m with
|
||||
| E -> raise Not_found
|
||||
| S (_, k', v') -> if Key.equal k k' then v' else raise Not_found
|
||||
| L (_, l) -> get_exn_list_ k l
|
||||
| N (leaf, a) ->
|
||||
if Hash.is_0 h then get_exn_list_ k leaf
|
||||
|
|
@ -335,31 +341,42 @@ module Make(Key : KEY)
|
|||
|
||||
(* [h]: hash, with the part required to reach this leaf removed *)
|
||||
let rec add_ k v ~h m = match m with
|
||||
| E -> leaf_ k v ~h
|
||||
| E -> S (h, k, v)
|
||||
| S (h', k', v') ->
|
||||
if h=h'
|
||||
then if Key.equal k k'
|
||||
then S (h, k, v) (* replace *)
|
||||
else L (h, Cons (k, v, Cons (k', v', Nil)))
|
||||
else
|
||||
make_array_ ~leaf:(Cons (k', v', Nil)) ~h_leaf:h' k v ~h
|
||||
| L (h', l) ->
|
||||
if h=h'
|
||||
then L (h, add_list_ k v l)
|
||||
else (* split into N *)
|
||||
let a = A.create ~empty:E in
|
||||
let a, leaf =
|
||||
if Hash.is_0 h' then a, l
|
||||
else
|
||||
(* put leaf in the right bucket *)
|
||||
let i = Hash.rem h' in
|
||||
let h'' = Hash.quotient h' in
|
||||
A.set a i (L (h'', l)), Nil
|
||||
in
|
||||
(* then add new node *)
|
||||
let a, leaf =
|
||||
if Hash.is_0 h then a, add_list_ k v leaf
|
||||
else add_to_array_ k v ~h a, leaf
|
||||
in
|
||||
N (leaf, a)
|
||||
make_array_ ~leaf:l ~h_leaf:h' k v ~h
|
||||
| N (leaf, a) ->
|
||||
if Hash.is_0 h
|
||||
then N (add_list_ k v leaf, a)
|
||||
else N (leaf, add_to_array_ k v ~h a)
|
||||
|
||||
(* make an array containing a leaf, and insert (k,v) in it *)
|
||||
and make_array_ ~leaf ~h_leaf:h' k v ~h =
|
||||
let a = A.create ~empty:E in
|
||||
let a, leaf =
|
||||
if Hash.is_0 h' then a, leaf
|
||||
else
|
||||
(* put leaf in the right bucket *)
|
||||
let i = Hash.rem h' in
|
||||
let h'' = Hash.quotient h' in
|
||||
A.set a i (L (h'', leaf)), Nil
|
||||
in
|
||||
(* then add new node *)
|
||||
let a, leaf =
|
||||
if Hash.is_0 h then a, add_list_ k v leaf
|
||||
else add_to_array_ k v ~h a, leaf
|
||||
in
|
||||
N (leaf, a)
|
||||
|
||||
(* add k->v to [a] *)
|
||||
and add_to_array_ k v ~h a =
|
||||
(* insert in a bucket *)
|
||||
|
|
@ -390,6 +407,8 @@ module Make(Key : KEY)
|
|||
|
||||
let rec remove_rec_ k ~h m = match m with
|
||||
| E -> E
|
||||
| S (_, k', _) ->
|
||||
if Key.equal k k' then E else m
|
||||
| L (h, l) ->
|
||||
let l = remove_list_ k l in
|
||||
if is_empty_list_ l then E else L (h, l)
|
||||
|
|
@ -414,6 +433,7 @@ module Make(Key : KEY)
|
|||
let iter f t =
|
||||
let rec aux = function
|
||||
| E -> ()
|
||||
| S (_, k, v) -> f k v
|
||||
| L (_,l) -> aux_list l
|
||||
| N (l,a) -> aux_list l; A.iter aux a
|
||||
and aux_list = function
|
||||
|
|
@ -425,6 +445,7 @@ module Make(Key : KEY)
|
|||
let fold f acc t =
|
||||
let rec aux acc t = match t with
|
||||
| E -> acc
|
||||
| S (_,k,v) -> f acc k v
|
||||
| L (_,l) -> aux_list acc l
|
||||
| N (l,a) -> let acc = aux_list acc l in A.fold aux acc a
|
||||
and aux_list acc l = match l with
|
||||
|
|
@ -462,6 +483,7 @@ module Make(Key : KEY)
|
|||
|
||||
let rec as_tree m () = match m with
|
||||
| E -> `Nil
|
||||
| S (h,k,v) -> `Node (`L ((h:>int), [k,v]), [])
|
||||
| L (h,l) -> `Node (`L ((h:>int), list_as_tree_ l), [])
|
||||
| N (l,a) -> `Node (`N, as_tree (L (Hash.zero, l)) :: array_as_tree_ a)
|
||||
and list_as_tree_ l = match l with
|
||||
|
|
@ -472,7 +494,7 @@ end
|
|||
|
||||
(*$R
|
||||
let module M = Make(CCInt) in
|
||||
let m = M.of_list CCList.(1 -- 1000 |> map (fun i->i,i)) in
|
||||
let m = M.of_list CCList.( (501 -- 1000) @ (500 -- 1) |> map (fun i->i,i)) in
|
||||
assert_equal ~printer:CCInt.to_string 1000 (M.cardinal m);
|
||||
assert_bool "check all get"
|
||||
(Sequence.for_all (fun i -> i = M.get_exn i m) Sequence.(1 -- 1000));
|
||||
|
|
|
|||
|
|
@ -8,6 +8,9 @@
|
|||
update and access {b if} the hash function is good.
|
||||
The trie is not binary, to improve cache locality and decrease depth.
|
||||
|
||||
Preliminary benchmarks (see the "tbl" section of benchmarks) tend to show
|
||||
that this type is quite efficient for small data sets.
|
||||
|
||||
{b status: experimental}
|
||||
|
||||
@since NEXT_RELEASE
|
||||
|
|
@ -97,6 +100,6 @@ end
|
|||
module Make(K : KEY) : S with type key = K.t
|
||||
|
||||
(**/**)
|
||||
val popcount64 : int64 -> int
|
||||
val popcount : int -> int
|
||||
module A_SPARSE : FIXED_ARRAY
|
||||
(**/**)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue