mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-10 21:24:06 -05:00
Some revisions
This commit is contained in:
parent
64c170f3a1
commit
1a9f4a554c
3 changed files with 4 additions and 5 deletions
Binary file not shown.
|
|
@ -45,7 +45,7 @@
|
|||
|
||||
\msat{}: a SAT solving library in OCaml. Solves the \textbf{satisfibility}
|
||||
of propositional clauses. It is \textbf{Modular}: the user provides
|
||||
the theory, and produces \textbf{formal proof}.
|
||||
the theory. And it \textbf{produces formal proofs}.
|
||||
}
|
||||
|
||||
\tblock{Conflict Driven Clause learning}
|
||||
|
|
@ -97,14 +97,13 @@
|
|||
|
||||
\tblock{Other solvers}
|
||||
{
|
||||
\\
|
||||
\begin{center}
|
||||
\begin{tabular}{c@{\quad}|@{\quad}c@{\quad}|@{\quad}c@{\quad}|@{\quad}c}
|
||||
regstab & SAT & binary only & only pure SAT \\ \hline
|
||||
\begin{tabular}{c}\textbf{minisat}\\\textbf{sattools}\\ocaml-sat-solvers\end{tabular} & SAT & C bindings & only pure SAT \\ \hline
|
||||
Alt-ergo & SMT & binary only & Fixed theory \\ \hline
|
||||
\textbf{Alt-ergo-zero} & SMT & OCaml lib & Fixed theory \\ \hline
|
||||
\begin{tabular}{c}ocamlyices\\yices2\end{tabular} & SMT & C bindings & Fixed theory \\ \hline
|
||||
\begin{tabular}{c}ocamlyices\\yices2\end{tabular} & SMT & C bindings & Fixed theory \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
}
|
||||
|
|
@ -158,7 +157,7 @@
|
|||
pigeon/hole7 & 4.257 & 0.213 & 0.015 & 0.073 \\ \hline
|
||||
pigeon/hole8 & 31.450 & 0.941 & 0.096 & 2.488 \\ \hline
|
||||
pigeon/hole9 & \begin{tabular}{c}timeout\\(600)\end{tabular} & 8.886 & 0.634 & 4.075 \\ \hline
|
||||
pigeon/hole10 & \begin{tabular}{c}timeout\\(600)\end{tabular} & 161.478 & \begin{tabular}{c}9.579 (minisat)\\160.376 (sattools)\end{tabular} & 72.050 \\ \hline
|
||||
pigeon/hole10 & \begin{tabular}{c}timeout\\(600)\end{tabular} & 161.478 & \begin{tabular}{c}9.579 (minisat)\\160.376 (sattools)\end{tabular} & 72.050 \\
|
||||
\end{tabular}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
module Make(Th: Theory_intf)() : sig
|
||||
module Make(Th: Theory_intf.S)() : sig
|
||||
type 'f sat_state = { eval : 'f -> bool; ... }
|
||||
type ('c,'p) unsat_state =
|
||||
{ conflict: unit -> 'c; proof : unit -> 'p }
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue