mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-06 03:05:31 -05:00
missing module
This commit is contained in:
parent
4a30a06f87
commit
5a6019f834
1 changed files with 210 additions and 0 deletions
210
src/quip/Proof.ml
Normal file
210
src/quip/Proof.ml
Normal file
|
|
@ -0,0 +1,210 @@
|
|||
|
||||
(** A reference to a previously defined object in the proof *)
|
||||
type id = int
|
||||
|
||||
(** Representation of types *)
|
||||
module Ty = struct
|
||||
type t =
|
||||
| Bool
|
||||
| Arrow of t array * t
|
||||
| App of string * t array
|
||||
| Ref of id
|
||||
|
||||
let equal : t -> t -> bool = (=)
|
||||
let hash : t -> int = CCHash.poly
|
||||
let[@inline] view (self:t) : t = self
|
||||
|
||||
let rec pp out (self:t) =
|
||||
match self with
|
||||
| Bool -> Fmt.string out "Bool"
|
||||
| Arrow (args, ret) ->
|
||||
Fmt.fprintf out "(@[->@ %a@ %a@])" (Util.pp_array pp) args pp ret
|
||||
| App (c, [||]) -> Fmt.string out c
|
||||
| App (c, args) ->
|
||||
Fmt.fprintf out "(@[%s@ %a@])" c (Util.pp_array pp) args
|
||||
| Ref id -> Fmt.fprintf out "@@%d" id
|
||||
end
|
||||
|
||||
module Fun = struct
|
||||
type t = string
|
||||
let pp out (self:t) = Fmt.string out self
|
||||
let equal : t -> t -> bool = (=)
|
||||
let hash : t -> int = CCHash.poly
|
||||
end
|
||||
|
||||
module Cstor = Fun
|
||||
|
||||
(** Representation of terms, with explicit sharing *)
|
||||
module T = struct
|
||||
type t =
|
||||
| Bool of bool
|
||||
| App_fun of Fun.t * t array
|
||||
| App_ho of t * t
|
||||
| Ite of t * t * t
|
||||
| Not of t
|
||||
| Eq of t * t
|
||||
| Ref of id
|
||||
let[@inline] view (self:t) : t = self
|
||||
|
||||
let equal : t -> t -> bool = (=)
|
||||
let hash : t -> int = CCHash.poly
|
||||
|
||||
let true_ : t = Bool true
|
||||
let false_ : t = Bool false
|
||||
let not_ = function Not x -> x | x -> Not x
|
||||
let eq a b : t = Eq (a,b)
|
||||
let ref id : t = Ref id
|
||||
let app_fun f args : t = App_fun (f, args)
|
||||
let const c = app_fun c [||]
|
||||
let app_ho a b : t = App_ho (a,b)
|
||||
let ite a b c : t = Ite (a,b,c)
|
||||
|
||||
let rec pp out = function
|
||||
| Bool b -> Fmt.bool out b
|
||||
| Ite (a,b,c) -> Fmt.fprintf out "(@[if@ %a@ %a@ %a@])" pp a pp b pp c
|
||||
| App_fun (f,[||]) -> Fmt.string out f
|
||||
| App_fun (f,args) ->
|
||||
Fmt.fprintf out "(@[%a@ %a@])" Fun.pp f (Util.pp_array pp) args
|
||||
| App_ho (f,a) -> Fmt.fprintf out "(@[%a@ %a@])" pp f pp a
|
||||
| Not a -> Fmt.fprintf out "(@[not@ %a@])" pp a
|
||||
| Eq (a,b) -> Fmt.fprintf out "(@[=@ %a@ %a@])" pp a pp b
|
||||
| Ref id -> Fmt.fprintf out "@@%d" id
|
||||
end
|
||||
|
||||
type term = T.t
|
||||
type ty = Ty.t
|
||||
|
||||
module Lit = struct
|
||||
type t =
|
||||
| L_eq of bool * term * term
|
||||
| L_a of bool * term
|
||||
|
||||
let not = function
|
||||
| L_eq (sign,a,b) -> L_eq(not sign,a,b)
|
||||
| L_a (sign,t) -> L_a (not sign,t)
|
||||
|
||||
let pp_with ~pp_t out =
|
||||
let strsign = function true -> "+" | false -> "-" in
|
||||
function
|
||||
| L_eq (b,t,u) -> Fmt.fprintf out "(@[%s@ (@[=@ %a@ %a@])@])" (strsign b) pp_t t pp_t u
|
||||
| L_a (b,t) -> Fmt.fprintf out "(@[%s@ %a@])" (strsign b) pp_t t
|
||||
|
||||
let pp = pp_with ~pp_t:T.pp
|
||||
|
||||
let a t = L_a (true,t)
|
||||
let na t = L_a (false,t)
|
||||
let eq t u = L_eq (true,t,u)
|
||||
let neq t u = L_eq (false,t,u)
|
||||
let mk b t = L_a (b,t)
|
||||
let sign = function L_a (b,_) | L_eq (b,_,_) -> b
|
||||
end
|
||||
|
||||
type clause = Lit.t list
|
||||
|
||||
type t =
|
||||
| Unspecified
|
||||
| Sorry (* NOTE: v. bad as we don't even specify the return *)
|
||||
| Sorry_c of clause
|
||||
| Named of string (* refers to previously defined clause *)
|
||||
| Refl of term
|
||||
| CC_lemma_imply of t list * term * term
|
||||
| CC_lemma of clause
|
||||
| Assertion of term
|
||||
| Assertion_c of clause
|
||||
| Drup_res of clause
|
||||
| Hres of t * hres_step list
|
||||
| Res of term * t * t
|
||||
| Res1 of t * t
|
||||
| DT_isa_split of ty * term list
|
||||
| DT_isa_disj of ty * term * term
|
||||
| DT_cstor_inj of Cstor.t * int * term list * term list (* [c t…=c u… |- t_i=u_i] *)
|
||||
| Bool_true_is_true
|
||||
| Bool_true_neq_false
|
||||
| Bool_eq of term * term (* equal by pure boolean reasoning *)
|
||||
| Bool_c of bool_c_name * term list (* boolean tautology *)
|
||||
| Nn of t (* negation normalization *)
|
||||
| Ite_true of term (* given [if a b c] returns [a=T |- if a b c=b] *)
|
||||
| Ite_false of term
|
||||
| LRA of clause
|
||||
| Composite of {
|
||||
(* some named (atomic) assumptions *)
|
||||
assumptions: (string * Lit.t) list;
|
||||
steps: composite_step array; (* last proof_rule is the proof *)
|
||||
}
|
||||
|
||||
and bool_c_name = string
|
||||
|
||||
and composite_step =
|
||||
| S_step_c of {
|
||||
name: string; (* name *)
|
||||
res: clause; (* result of [proof] *)
|
||||
proof: t; (* sub-proof *)
|
||||
}
|
||||
| S_define_t of term * term (* [const := t] *)
|
||||
| S_define_t_name of string * term (* [const := t] *)
|
||||
|
||||
and hres_step =
|
||||
| R of { pivot: term; p: t}
|
||||
| R1 of t
|
||||
| P of { lhs: term; rhs: term; p: t}
|
||||
| P1 of t
|
||||
|
||||
let r p ~pivot : hres_step = R { pivot; p }
|
||||
let r1 p = R1 p
|
||||
let p p ~lhs ~rhs : hres_step = P { p; lhs; rhs }
|
||||
let p1 p = P1 p
|
||||
|
||||
let stepc ~name res proof : composite_step = S_step_c {proof;name;res}
|
||||
let deft c rhs : composite_step = S_define_t (c,rhs)
|
||||
let deft_name c rhs : composite_step = S_define_t_name (c,rhs)
|
||||
|
||||
let is_trivial_refl = function
|
||||
| Refl _ -> true
|
||||
| _ -> false
|
||||
|
||||
let default=Unspecified
|
||||
let sorry_c c = Sorry_c (Iter.to_rev_list c)
|
||||
let sorry_c_l c = Sorry_c c
|
||||
let sorry = Sorry
|
||||
let refl t : t = Refl t
|
||||
let ref_by_name name : t = Named name
|
||||
let cc_lemma c : t = CC_lemma c
|
||||
let cc_imply_l l t u : t =
|
||||
let l = List.filter (fun p -> not (is_trivial_refl p)) l in
|
||||
match l with
|
||||
| [] -> refl t (* only possible way [t=u] *)
|
||||
| l -> CC_lemma_imply (l, t, u)
|
||||
let cc_imply2 h1 h2 t u : t = CC_lemma_imply ([h1; h2], t, u)
|
||||
let assertion t = Assertion t
|
||||
let assertion_c c = Assertion_c (Iter.to_rev_list c)
|
||||
let assertion_c_l c = Assertion_c c
|
||||
let composite_a ?(assms=[]) steps : t =
|
||||
Composite {assumptions=assms; steps}
|
||||
let composite_l ?(assms=[]) steps : t =
|
||||
Composite {assumptions=assms; steps=Array.of_list steps}
|
||||
let composite_iter ?(assms=[]) steps : t =
|
||||
let steps = Iter.to_array steps in
|
||||
Composite {assumptions=assms; steps}
|
||||
|
||||
let isa_split ty i = DT_isa_split (ty, Iter.to_rev_list i)
|
||||
let isa_disj ty t u = DT_isa_disj (ty, t, u)
|
||||
let cstor_inj c i t u = DT_cstor_inj (c, i, t, u)
|
||||
|
||||
let ite_true t = Ite_true t
|
||||
let ite_false t = Ite_false t
|
||||
let true_is_true : t = Bool_true_is_true
|
||||
let true_neq_false : t = Bool_true_neq_false
|
||||
let bool_eq a b : t = Bool_eq (a,b)
|
||||
let bool_c name c : t = Bool_c (name, c)
|
||||
let nn c : t = Nn c
|
||||
|
||||
let drup_res c : t = Drup_res c
|
||||
let hres_l p l : t =
|
||||
let l = List.filter (function (P1 (Refl _)) -> false | _ -> true) l in
|
||||
if l=[] then p else Hres (p,l)
|
||||
let hres_iter c i : t = hres_l c (Iter.to_list i)
|
||||
let res ~pivot p1 p2 : t = Res (pivot,p1,p2)
|
||||
let res1 p1 p2 : t = Res1 (p1,p2)
|
||||
|
||||
let lra_l c : t = LRA c
|
||||
let lra c = LRA (Iter.to_rev_list c)
|
||||
Loading…
Add table
Reference in a new issue