wip: feat(intsolver): new integer solver based on FM extension (Williams '75)

This commit is contained in:
Simon Cruanes 2022-01-14 13:31:17 -05:00
parent 6e0358f5e1
commit af1a1478f2
No known key found for this signature in database
GPG key ID: EBFFF6F283F3A2B4
4 changed files with 684 additions and 0 deletions

6
src/intsolver/dune Normal file
View file

@ -0,0 +1,6 @@
(library
(name sidekick_intsolver)
(public_name sidekick.intsolver)
(synopsis "Simple integer solver")
(flags :standard -warn-error -a+8 -w -32 -open Sidekick_util)
(libraries containers sidekick.core sidekick.arith))

View file

@ -0,0 +1,304 @@
module type ARG = sig
module Z : Sidekick_arith.INT
type term
type lit
val pp_term : term Fmt.printer
val pp_lit : lit Fmt.printer
module T_map : CCMap.S with type key = term
end
module type S = sig
module A : ARG
module Op : sig
type t =
| Leq
| Lt
| Eq
val pp : t Fmt.printer
end
type t
val create : unit -> t
val push_level : t -> unit
val pop_levels : t -> int -> unit
val assert_ :
t ->
(A.Z.t * A.term) list -> Op.t -> A.Z.t ->
lit:A.lit ->
unit
val define :
t ->
A.term ->
(A.Z.t * A.term) list ->
unit
module Cert : sig
type t
val pp : t Fmt.printer
val lits : t -> A.lit Iter.t
end
module Model : sig
type t
val pp : t Fmt.printer
val eval : t -> A.term -> A.Z.t option
end
type result =
| Sat of Model.t
| Unsat of Cert.t
val pp_result : result Fmt.printer
val check : t -> result
(**/**)
val _check_invariants : t -> unit
(**/**)
end
module Make(A : ARG)
: S with module A = A
= struct
module BVec = Backtrack_stack
module A = A
open A
module Op = struct
type t =
| Leq
| Lt
| Eq
let pp out = function
| Leq -> Fmt.string out "<="
| Lt -> Fmt.string out "<"
| Eq -> Fmt.string out "="
end
module Linexp = struct
type t = Z.t T_map.t
let is_empty = T_map.is_empty
let empty : t = T_map.empty
let pp out (self:t) : unit =
let pp_pair out (t,z) = Fmt.fprintf out "%a · %a" Z.pp z A.pp_term t in
if is_empty self then Fmt.string out "0"
else Fmt.fprintf out "(@[+@ %a@])"
Fmt.(iter ~sep:(return "@ ") pp_pair) (T_map.to_iter self)
let iter = T_map.iter
let return t : t = T_map.add t Z.one empty
let neg self : t = T_map.map Z.neg self
let mult n self =
if Z.(n = zero) then empty
else T_map.map (fun c -> Z.(c * n)) self
let add (self:t) (c:Z.t) (t:term) : t =
let n = Z.(c + T_map.get_or ~default:Z.zero t self) in
if Z.(n = zero)
then T_map.remove t self
else T_map.add t n self
let merge (self:t) (other:t) : t =
T_map.fold
(fun t c m -> add m c t)
other self
let of_list l : t =
List.fold_left (fun self (c,t) -> add self c t) empty l
(* map each term to a linexp *)
let flat_map f (self:t) : t =
T_map.fold
(fun t c m ->
let t_le = mult c (f t) in
merge m t_le
)
empty self
end
module Cert = struct
type t = unit
let pp = Fmt.unit
let lits _ = Iter.empty (* TODO *)
end
module Model = struct
type t = {
m: Z.t T_map.t;
} [@@unboxed]
let pp out self =
let pp_pair out (t,z) = Fmt.fprintf out "(@[%a := %a@])" A.pp_term t Z.pp z in
Fmt.fprintf out "(@[model@ %a@])"
Fmt.(iter ~sep:(return "@ ") pp_pair) (T_map.to_iter self.m)
let empty : t = {m=T_map.empty}
let eval (self:t) t : Z.t option = T_map.get t self.m
end
module Constr = struct
type t = {
le: Linexp.t;
const: Z.t;
op: Op.t;
lits: lit Bag.t;
}
let pp out self =
Fmt.fprintf out "(@[%a@ %a %a@])" Linexp.pp self.le Op.pp self.op Z.pp self.const
end
type t = {
defs: (term * Linexp.t) BVec.t;
cs: Constr.t BVec.t;
}
let create() : t =
{ defs=BVec.create();
cs=BVec.create(); }
let push_level self =
BVec.push_level self.defs;
BVec.push_level self.cs;
()
let pop_levels self n =
BVec.pop_levels self.defs n ~f:(fun _ -> ());
BVec.pop_levels self.cs n ~f:(fun _ -> ());
()
type result =
| Sat of Model.t
| Unsat of Cert.t
let pp_result out = function
| Sat m -> Fmt.fprintf out "(@[SAT@ %a@])" Model.pp m
| Unsat cert -> Fmt.fprintf out "(@[UNSAT@ %a@])" Cert.pp cert
let assert_ (self:t) l op c ~lit : unit =
let le = Linexp.of_list l in
let c = {Constr.le; const=c; op; lits=Bag.return lit} in
Log.debugf 10 (fun k->k "(@[sidekick.intsolver.assert@ %a@])" Constr.pp c);
BVec.push self.cs c
(* TODO: check before hand that [t] occurs nowhere else *)
let define (self:t) t l : unit =
let le = Linexp.of_list l in
BVec.push self.defs (t,le)
(* #### checking #### *)
module Check_ = struct
module LE = Linexp
type op =
| Leq
| Lt
| Eq
| Eq_mod of {
prime: Z.t;
pow: int;
} (* modulo prime^pow *)
type constr = {
le: LE.t;
const: Z.t;
op: op;
lits: lit Bag.t;
}
type state = {
mutable rw: LE.t T_map.t; (* rewrite rules *)
mutable vars: int T_map.t; (* variables in at least one constraint *)
mutable constrs: constr list;
}
(* main solving state. mutable, but copied for backtracking.
invariant: variables in [rw] do not occur anywhere else
*)
(* perform rewriting on the linear expression *)
let norm_le (self:state) (le:LE.t) : LE.t =
LE.flat_map
(fun t -> try T_map.find t self.rw with Not_found -> LE.return t)
le
let[@inline] count_v self t : int = T_map.get_or ~default:0 t self.vars
let[@inline] incr_v (self:state) (t:term) : unit =
self.vars <- T_map.add t (1 + count_v self t) self.vars
let decr_v (self:state) (t:term) : unit =
let n = count_v self t - 1 in
assert (n >= 0);
self.vars <-
(if n=0 then T_map.remove t self.vars
else T_map.add t n self.vars)
let add_constr (self:state) (c:constr) =
let c = {c with le=norm_le self c.le } in
LE.iter (fun t _ -> incr_v self t) c.le;
self.constrs <- c :: self.constrs
let remove_constr (self:state) (c:constr) =
LE.iter (fun t _ -> decr_v self t) c.le
let create (self:t) : state =
let state = {
vars=T_map.empty;
rw=T_map.empty;
constrs=[];
} in
BVec.iter self.defs
~f:(fun (v,le) ->
assert (not (T_map.mem v state.rw));
state.rw <- T_map.add v (norm_le state le) state.rw);
BVec.iter self.cs
~f:(fun (c:Constr.t) ->
let {Constr.le; op; const; lits} = c in
let op = match op with
| Op.Eq -> Eq
| Op.Leq -> Leq
| Op.Lt -> Lt
in
let c = {le;const;lits;op} in
add_constr state c
);
state
let rec solve_rec (self:state) : result =
begin match T_map.choose_opt self.vars with
| None ->
let m = Model.empty in
Sat m (* TODO: model *)
| Some (t, _) ->
Log.debugf 30 (fun k->k "(@[intsolver.elim-var@ %a@])" A.pp_term t);
assert false
end
end
let check (self:t) : result =
Log.debugf 10 (fun k->k "(@[intsolver.check@])");
let state = Check_.create self in
Check_.solve_rec state
let _check_invariants _ = ()
end

15
src/intsolver/tests/dune Normal file
View file

@ -0,0 +1,15 @@
(library
(name sidekick_test_intsolver)
(libraries zarith sidekick.intsolver sidekick.util sidekick.zarith
qcheck alcotest))
;(rule
; (targets sidekick_test_intsolver.ml)
; (enabled_if (>= %{ocaml_version} 4.08.0))
; (action (copy test_intsolver.real.ml %{targets})))
;
;(rule
; (targets sidekick_test_intsolver.ml)
; (enabled_if (< %{ocaml_version} 4.08.0))
; (action (with-stdout-to %{targets} (echo "let props=[];; let tests=\"intsolver\",[]"))))

View file

@ -0,0 +1,359 @@
open CCMonomorphic
module Fmt = CCFormat
module QC = QCheck
module Log = Sidekick_util.Log
let spf = Printf.sprintf
module ZarithZ = Z
module Z = Sidekick_zarith.Int
module Var = struct
include CCInt
let pp out x = Format.fprintf out "X_%d" x
let rand n : t QC.arbitrary = QC.make ~print:(Fmt.to_string pp) @@ QC.Gen.(0--n)
type lit = int
let pp_lit = Fmt.int
let not_lit i = Some (- i)
end
module Var_map = CCMap.Make(Var)
module Solver = Sidekick_intsolver.Make(struct
module Z = Z
type term = Var.t
let pp_term = Var.pp
type lit = Var.lit
let pp_lit = Var.pp_lit
module T_map = Var_map
end)
let unwrap_opt_ msg = function
| Some x -> x
| None -> failwith msg
let rand_n low n : Z.t QC.arbitrary =
QC.map ~rev:ZarithZ.to_int Z.of_int QC.(low -- n)
let rand_z = rand_n (-1000) 30_000
module Step = struct
module G = QC.Gen
type linexp = (Z.t * Var.t) list
type t =
| S_new_var of Var.t
| S_define of Var.t * (Z.t * Var.t) list
| S_leq of linexp * Z.t
| S_lt of linexp * Z.t
| S_eq of linexp * Z.t
let pp_le out (le:linexp) =
let pp_pair out (n,x) =
if Z.equal Z.one n then Var.pp out x
else Fmt.fprintf out "%a . %a" Z.pp n Var.pp x in
Fmt.fprintf out "(@[%a@])"
Fmt.(list ~sep:(return " +@ ") pp_pair) le
let pp_ out = function
| S_new_var v -> Fmt.fprintf out "(@[new-var %a@])" Var.pp v
| S_define (v,le) -> Fmt.fprintf out "(@[define %a@ := %a@])" Var.pp v pp_le le
| S_leq (le,n) -> Fmt.fprintf out "(@[upper %a <= %a@])" pp_le le Z.pp n
| S_lt (le,n) -> Fmt.fprintf out "(@[upper %a < %a@])" pp_le le Z.pp n
| S_eq (le,n) -> Fmt.fprintf out "(@[lower %a > %a@])" pp_le le Z.pp n
(* check that a sequence is well formed *)
let well_formed (l:t list) : bool =
let rec aux vars = function
| [] -> true
| S_new_var v :: tl ->
not (List.mem v vars) && aux (v::vars) tl
| (S_leq (le,_) | S_lt (le,_) | S_eq (le,_)) :: tl ->
List.for_all (fun (_,x) -> List.mem x vars) le && aux vars tl
| S_define (x,le) :: tl->
not (List.mem x vars) &&
List.for_all (fun (_,y) -> List.mem y vars) le &&
aux (x::vars) tl
in
aux [] l
let shrink_step self =
let module S = QC.Shrink in
match self with
| S_new_var _
| S_leq _ | S_lt _ | S_eq _ -> QC.Iter.empty
| S_define (x, le) ->
let open QC.Iter in
let* le = S.list le in
if List.length le >= 2 then return (S_define (x,le)) else empty
let rand_steps (n:int) : t list QC.Gen.t =
let open G in
let rec aux n vars acc =
if n<=0 then return (List.rev acc)
else (
let gen_linexp =
let* vars' = G.shuffle_l vars in
let* n = 1 -- List.length vars' in
let vars' = CCList.take n vars' in
assert (List.length vars' = n);
let* coeffs = list_repeat n rand_z.gen in
return (List.combine coeffs vars')
in
let* vars, proof_rule =
frequency @@ List.flatten [
(* add a constraint *)
(match vars with
| [] -> []
| _ ->
let gen =
let+ le = gen_linexp
and+ kind = oneofl [`Leq;`Lt;`Eq]
and+ n = rand_z.QC.gen in
vars, (match kind with
| `Lt -> S_lt(le,n)
| `Leq -> S_leq(le,n)
| `Eq -> S_eq(le,n)
)
in
[6, gen]);
(* make a new non-basic var *)
(let gen =
let v = List.length vars in
return ((v::vars), S_new_var v)
in
[2, gen]);
(* make a definition *)
(if List.length vars>2
then (
let v = List.length vars in
let gen =
let+ le = gen_linexp in
v::vars, S_define (v, le)
in
[5, gen]
) else []);
]
in
aux (n-1) vars (proof_rule::acc)
)
in
aux n [] []
(* shrink a list but keep it well formed *)
let shrink : t list QC.Shrink.t =
QC.Shrink.(filter well_formed @@ list ~shrink:shrink_step)
let gen_for n1 n2 =
let open G in
assert (n1 < n2);
let* n = n1 -- n2 in
rand_steps n
let rand_for n1 n2 : t list QC.arbitrary =
let print = Fmt.to_string (Fmt.Dump.list pp_) in
QC.make ~shrink ~print (gen_for n1 n2)
let rand : t list QC.arbitrary = rand_for 1 100
end
let on_propagate _ ~reason:_ = ()
(* add a single proof_rule to the solvere *)
let add_step solver (s:Step.t) : unit =
begin match s with
| Step.S_new_var _v -> ()
| Step.S_leq (le,n) ->
Solver.assert_ solver le Solver.Op.Leq n ~lit:0
| Step.S_lt (le,n) ->
Solver.assert_ solver le Solver.Op.Lt n ~lit:0
| Step.S_eq (le,n) ->
Solver.assert_ solver le Solver.Op.Eq n ~lit:0
| Step.S_define (x,le) ->
Solver.define solver x le
end
let add_steps ?(f=fun()->()) (solver:Solver.t) l : unit =
f();
List.iter
(fun s -> add_step solver s; f())
l
(* is this solver's state sat? *)
let check_solver_is_sat solver : bool =
match Solver.check solver with
| Solver.Sat _ -> true
| Solver.Unsat _ -> false
(* is this problem sat? *)
let check_pb_is_sat pb : bool =
let solver = Solver.create() in
add_steps solver pb;
check_solver_is_sat solver
(* basic debug printer for Q.t *)
let str_z n = ZarithZ.to_string n
let prop_sound ?(inv=false) pb =
let solver = Solver.create () in
begin match
add_steps solver pb;
Solver.check solver
with
| Sat model ->
let get_val v =
match Solver.Model.eval model v with
| Some n -> n
| None -> assert false
in
let eval_le le =
List.fold_left (fun s (n,y) -> Z.(s + n * get_val y)) Z.zero le
in
let check_step s =
(try
if inv then Solver._check_invariants solver;
match s with
| Step.S_new_var _ -> ()
| Step.S_define (x, le) ->
let v_x = get_val x in
let v_le = eval_le le in
if Z.(v_x <> v_le) then (
failwith (spf "bad def (X_%d): val(x)=%s, val(expr)=%s" x (str_z v_x)(str_z v_le))
);
| Step.S_lt (x, n) ->
let v_x = eval_le x in
if Z.(v_x >= n) then failwith (spf "val=%s, n=%s"(str_z v_x)(str_z n))
| Step.S_leq (x, n) ->
let v_x = eval_le x in
if Z.(v_x > n) then failwith (spf "val=%s, n=%s"(str_z v_x)(str_z n))
| Step.S_eq (x, n) ->
let v_x = eval_le x in
if Z.(v_x <> n) then failwith (spf "val=%s, n=%s"(str_z v_x)(str_z n))
with e ->
QC.Test.fail_reportf "proof_rule failed: %a@.exn:@.%s@."
Step.pp_ s (Printexc.to_string e)
);
if inv then Solver._check_invariants solver;
true
in
List.for_all check_step pb
| Solver.Unsat _cert ->
(* FIXME:
Solver._check_cert cert;
*)
true
end
(* a bunch of useful stats for a problem *)
let steps_stats = [
"n-define", Step.(List.fold_left (fun n -> function S_define _ -> n+1 | _->n) 0);
"n-bnd",
Step.(List.fold_left
(fun n -> function (S_leq _ | S_lt _ | S_eq _) -> n+1 | _->n) 0);
"n-vars",
Step.(List.fold_left
(fun n -> function S_define _ | S_new_var _ -> n+1 | _ -> n) 0);
]
let enable_stats =
match Sys.getenv_opt "TEST_STAT" with Some("1"|"true") -> true | _ -> false
let set_stats_maybe ar =
if enable_stats then QC.set_stats steps_stats ar else ar
let check_sound =
let ar =
Step.(rand_for 0 300)
|> QC.set_collect (fun pb -> if check_pb_is_sat pb then "sat" else "unsat")
|> set_stats_maybe
in
QC.Test.make ~long_factor:10 ~count:500 ~name:"solver2_sound" ar prop_sound
let prop_backtrack pb =
let solver = Solver.create () in
let stack = Stack.create() in
let res = ref true in
begin try
List.iter
(fun s ->
let is_sat = check_solver_is_sat solver in
Solver.push_level solver;
Stack.push is_sat stack;
if not is_sat then (res := false; raise Exit);
add_step solver s;
)
pb;
with Exit -> ()
end;
res := !res && check_solver_is_sat solver;
Log.debugf 50 (fun k->k "res=%b, expected=%b" !res (check_pb_is_sat pb));
assert CCBool.(equal !res (check_pb_is_sat pb));
(* now backtrack and check at each level *)
while not (Stack.is_empty stack) do
let res = Stack.pop stack in
Solver.pop_levels solver 1;
assert CCBool.(equal res (check_solver_is_sat solver))
done;
true
let check_backtrack =
let ar =
Step.(rand_for 0 300)
|> QC.set_collect (fun pb -> if check_pb_is_sat pb then "sat" else "unsat")
|> set_stats_maybe
in
QC.Test.make
~long_factor:10 ~count:200 ~name:"solver2_backtrack"
ar prop_backtrack
let check_scalable =
let prop pb =
let solver = Solver.create () in
add_steps solver pb;
ignore (Solver.check solver : Solver.result);
true
in
let ar =
Step.(rand_for 3_000 5_000)
|> QC.set_collect (fun pb -> if check_pb_is_sat pb then "sat" else "unsat")
|> set_stats_maybe
in
QC.Test.make ~long_factor:2 ~count:10 ~name:"solver2_scalable"
ar prop
let props = [
check_sound;
check_backtrack;
check_scalable;
]
(* regression tests *)
module Reg = struct
let alco_mk name f = name, `Quick, f
let reg_prop_sound ?inv name l =
alco_mk name @@ fun () ->
if not (prop_sound ?inv l) then Alcotest.fail "fail";
()
let reg_prop_backtrack name l =
alco_mk name @@ fun () ->
if not (prop_backtrack l) then Alcotest.fail "fail";
()
open Step
let tests = [
]
end
let tests =
"solver", List.flatten [ Reg.tests ]