mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-06 03:05:31 -05:00
wip: feat(intsolver): new integer solver based on FM extension (Williams '75)
This commit is contained in:
parent
6e0358f5e1
commit
af1a1478f2
4 changed files with 684 additions and 0 deletions
6
src/intsolver/dune
Normal file
6
src/intsolver/dune
Normal file
|
|
@ -0,0 +1,6 @@
|
|||
(library
|
||||
(name sidekick_intsolver)
|
||||
(public_name sidekick.intsolver)
|
||||
(synopsis "Simple integer solver")
|
||||
(flags :standard -warn-error -a+8 -w -32 -open Sidekick_util)
|
||||
(libraries containers sidekick.core sidekick.arith))
|
||||
304
src/intsolver/sidekick_intsolver.ml
Normal file
304
src/intsolver/sidekick_intsolver.ml
Normal file
|
|
@ -0,0 +1,304 @@
|
|||
|
||||
module type ARG = sig
|
||||
module Z : Sidekick_arith.INT
|
||||
|
||||
type term
|
||||
type lit
|
||||
|
||||
val pp_term : term Fmt.printer
|
||||
val pp_lit : lit Fmt.printer
|
||||
|
||||
module T_map : CCMap.S with type key = term
|
||||
end
|
||||
|
||||
module type S = sig
|
||||
module A : ARG
|
||||
|
||||
module Op : sig
|
||||
type t =
|
||||
| Leq
|
||||
| Lt
|
||||
| Eq
|
||||
val pp : t Fmt.printer
|
||||
end
|
||||
|
||||
type t
|
||||
|
||||
val create : unit -> t
|
||||
|
||||
val push_level : t -> unit
|
||||
|
||||
val pop_levels : t -> int -> unit
|
||||
|
||||
val assert_ :
|
||||
t ->
|
||||
(A.Z.t * A.term) list -> Op.t -> A.Z.t ->
|
||||
lit:A.lit ->
|
||||
unit
|
||||
|
||||
val define :
|
||||
t ->
|
||||
A.term ->
|
||||
(A.Z.t * A.term) list ->
|
||||
unit
|
||||
|
||||
module Cert : sig
|
||||
type t
|
||||
val pp : t Fmt.printer
|
||||
|
||||
val lits : t -> A.lit Iter.t
|
||||
end
|
||||
|
||||
module Model : sig
|
||||
type t
|
||||
val pp : t Fmt.printer
|
||||
|
||||
val eval : t -> A.term -> A.Z.t option
|
||||
end
|
||||
|
||||
type result =
|
||||
| Sat of Model.t
|
||||
| Unsat of Cert.t
|
||||
|
||||
val pp_result : result Fmt.printer
|
||||
|
||||
val check : t -> result
|
||||
|
||||
(**/**)
|
||||
val _check_invariants : t -> unit
|
||||
(**/**)
|
||||
end
|
||||
|
||||
|
||||
|
||||
module Make(A : ARG)
|
||||
: S with module A = A
|
||||
= struct
|
||||
module BVec = Backtrack_stack
|
||||
module A = A
|
||||
open A
|
||||
|
||||
module Op = struct
|
||||
type t =
|
||||
| Leq
|
||||
| Lt
|
||||
| Eq
|
||||
|
||||
let pp out = function
|
||||
| Leq -> Fmt.string out "<="
|
||||
| Lt -> Fmt.string out "<"
|
||||
| Eq -> Fmt.string out "="
|
||||
end
|
||||
|
||||
module Linexp = struct
|
||||
type t = Z.t T_map.t
|
||||
let is_empty = T_map.is_empty
|
||||
let empty : t = T_map.empty
|
||||
|
||||
let pp out (self:t) : unit =
|
||||
let pp_pair out (t,z) = Fmt.fprintf out "%a · %a" Z.pp z A.pp_term t in
|
||||
if is_empty self then Fmt.string out "0"
|
||||
else Fmt.fprintf out "(@[+@ %a@])"
|
||||
Fmt.(iter ~sep:(return "@ ") pp_pair) (T_map.to_iter self)
|
||||
|
||||
let iter = T_map.iter
|
||||
let return t : t = T_map.add t Z.one empty
|
||||
let neg self : t = T_map.map Z.neg self
|
||||
let mult n self =
|
||||
if Z.(n = zero) then empty
|
||||
else T_map.map (fun c -> Z.(c * n)) self
|
||||
|
||||
let add (self:t) (c:Z.t) (t:term) : t =
|
||||
let n = Z.(c + T_map.get_or ~default:Z.zero t self) in
|
||||
if Z.(n = zero)
|
||||
then T_map.remove t self
|
||||
else T_map.add t n self
|
||||
|
||||
let merge (self:t) (other:t) : t =
|
||||
T_map.fold
|
||||
(fun t c m -> add m c t)
|
||||
other self
|
||||
|
||||
let of_list l : t =
|
||||
List.fold_left (fun self (c,t) -> add self c t) empty l
|
||||
|
||||
(* map each term to a linexp *)
|
||||
let flat_map f (self:t) : t =
|
||||
T_map.fold
|
||||
(fun t c m ->
|
||||
let t_le = mult c (f t) in
|
||||
merge m t_le
|
||||
)
|
||||
empty self
|
||||
end
|
||||
|
||||
module Cert = struct
|
||||
type t = unit
|
||||
let pp = Fmt.unit
|
||||
|
||||
let lits _ = Iter.empty (* TODO *)
|
||||
end
|
||||
|
||||
module Model = struct
|
||||
type t = {
|
||||
m: Z.t T_map.t;
|
||||
} [@@unboxed]
|
||||
|
||||
let pp out self =
|
||||
let pp_pair out (t,z) = Fmt.fprintf out "(@[%a := %a@])" A.pp_term t Z.pp z in
|
||||
Fmt.fprintf out "(@[model@ %a@])"
|
||||
Fmt.(iter ~sep:(return "@ ") pp_pair) (T_map.to_iter self.m)
|
||||
|
||||
let empty : t = {m=T_map.empty}
|
||||
|
||||
let eval (self:t) t : Z.t option = T_map.get t self.m
|
||||
end
|
||||
|
||||
module Constr = struct
|
||||
type t = {
|
||||
le: Linexp.t;
|
||||
const: Z.t;
|
||||
op: Op.t;
|
||||
lits: lit Bag.t;
|
||||
}
|
||||
|
||||
let pp out self =
|
||||
Fmt.fprintf out "(@[%a@ %a %a@])" Linexp.pp self.le Op.pp self.op Z.pp self.const
|
||||
end
|
||||
|
||||
type t = {
|
||||
defs: (term * Linexp.t) BVec.t;
|
||||
cs: Constr.t BVec.t;
|
||||
}
|
||||
|
||||
let create() : t =
|
||||
{ defs=BVec.create();
|
||||
cs=BVec.create(); }
|
||||
|
||||
let push_level self =
|
||||
BVec.push_level self.defs;
|
||||
BVec.push_level self.cs;
|
||||
()
|
||||
|
||||
let pop_levels self n =
|
||||
BVec.pop_levels self.defs n ~f:(fun _ -> ());
|
||||
BVec.pop_levels self.cs n ~f:(fun _ -> ());
|
||||
()
|
||||
|
||||
type result =
|
||||
| Sat of Model.t
|
||||
| Unsat of Cert.t
|
||||
|
||||
let pp_result out = function
|
||||
| Sat m -> Fmt.fprintf out "(@[SAT@ %a@])" Model.pp m
|
||||
| Unsat cert -> Fmt.fprintf out "(@[UNSAT@ %a@])" Cert.pp cert
|
||||
|
||||
let assert_ (self:t) l op c ~lit : unit =
|
||||
let le = Linexp.of_list l in
|
||||
let c = {Constr.le; const=c; op; lits=Bag.return lit} in
|
||||
Log.debugf 10 (fun k->k "(@[sidekick.intsolver.assert@ %a@])" Constr.pp c);
|
||||
BVec.push self.cs c
|
||||
|
||||
(* TODO: check before hand that [t] occurs nowhere else *)
|
||||
let define (self:t) t l : unit =
|
||||
let le = Linexp.of_list l in
|
||||
BVec.push self.defs (t,le)
|
||||
|
||||
(* #### checking #### *)
|
||||
|
||||
module Check_ = struct
|
||||
module LE = Linexp
|
||||
|
||||
type op =
|
||||
| Leq
|
||||
| Lt
|
||||
| Eq
|
||||
| Eq_mod of {
|
||||
prime: Z.t;
|
||||
pow: int;
|
||||
} (* modulo prime^pow *)
|
||||
|
||||
type constr = {
|
||||
le: LE.t;
|
||||
const: Z.t;
|
||||
op: op;
|
||||
lits: lit Bag.t;
|
||||
}
|
||||
|
||||
type state = {
|
||||
mutable rw: LE.t T_map.t; (* rewrite rules *)
|
||||
mutable vars: int T_map.t; (* variables in at least one constraint *)
|
||||
mutable constrs: constr list;
|
||||
}
|
||||
(* main solving state. mutable, but copied for backtracking.
|
||||
invariant: variables in [rw] do not occur anywhere else
|
||||
*)
|
||||
|
||||
(* perform rewriting on the linear expression *)
|
||||
let norm_le (self:state) (le:LE.t) : LE.t =
|
||||
LE.flat_map
|
||||
(fun t -> try T_map.find t self.rw with Not_found -> LE.return t)
|
||||
le
|
||||
|
||||
let[@inline] count_v self t : int = T_map.get_or ~default:0 t self.vars
|
||||
let[@inline] incr_v (self:state) (t:term) : unit =
|
||||
self.vars <- T_map.add t (1 + count_v self t) self.vars
|
||||
let decr_v (self:state) (t:term) : unit =
|
||||
let n = count_v self t - 1 in
|
||||
assert (n >= 0);
|
||||
self.vars <-
|
||||
(if n=0 then T_map.remove t self.vars
|
||||
else T_map.add t n self.vars)
|
||||
|
||||
let add_constr (self:state) (c:constr) =
|
||||
let c = {c with le=norm_le self c.le } in
|
||||
LE.iter (fun t _ -> incr_v self t) c.le;
|
||||
self.constrs <- c :: self.constrs
|
||||
|
||||
let remove_constr (self:state) (c:constr) =
|
||||
LE.iter (fun t _ -> decr_v self t) c.le
|
||||
|
||||
let create (self:t) : state =
|
||||
let state = {
|
||||
vars=T_map.empty;
|
||||
rw=T_map.empty;
|
||||
constrs=[];
|
||||
} in
|
||||
BVec.iter self.defs
|
||||
~f:(fun (v,le) ->
|
||||
assert (not (T_map.mem v state.rw));
|
||||
state.rw <- T_map.add v (norm_le state le) state.rw);
|
||||
BVec.iter self.cs
|
||||
~f:(fun (c:Constr.t) ->
|
||||
let {Constr.le; op; const; lits} = c in
|
||||
let op = match op with
|
||||
| Op.Eq -> Eq
|
||||
| Op.Leq -> Leq
|
||||
| Op.Lt -> Lt
|
||||
in
|
||||
let c = {le;const;lits;op} in
|
||||
add_constr state c
|
||||
);
|
||||
state
|
||||
|
||||
let rec solve_rec (self:state) : result =
|
||||
begin match T_map.choose_opt self.vars with
|
||||
| None ->
|
||||
let m = Model.empty in
|
||||
Sat m (* TODO: model *)
|
||||
|
||||
| Some (t, _) ->
|
||||
Log.debugf 30 (fun k->k "(@[intsolver.elim-var@ %a@])" A.pp_term t);
|
||||
assert false
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
let check (self:t) : result =
|
||||
Log.debugf 10 (fun k->k "(@[intsolver.check@])");
|
||||
let state = Check_.create self in
|
||||
Check_.solve_rec state
|
||||
|
||||
let _check_invariants _ = ()
|
||||
end
|
||||
15
src/intsolver/tests/dune
Normal file
15
src/intsolver/tests/dune
Normal file
|
|
@ -0,0 +1,15 @@
|
|||
|
||||
(library
|
||||
(name sidekick_test_intsolver)
|
||||
(libraries zarith sidekick.intsolver sidekick.util sidekick.zarith
|
||||
qcheck alcotest))
|
||||
|
||||
;(rule
|
||||
; (targets sidekick_test_intsolver.ml)
|
||||
; (enabled_if (>= %{ocaml_version} 4.08.0))
|
||||
; (action (copy test_intsolver.real.ml %{targets})))
|
||||
;
|
||||
;(rule
|
||||
; (targets sidekick_test_intsolver.ml)
|
||||
; (enabled_if (< %{ocaml_version} 4.08.0))
|
||||
; (action (with-stdout-to %{targets} (echo "let props=[];; let tests=\"intsolver\",[]"))))
|
||||
359
src/intsolver/tests/sidekick_test_intsolver.ml
Normal file
359
src/intsolver/tests/sidekick_test_intsolver.ml
Normal file
|
|
@ -0,0 +1,359 @@
|
|||
|
||||
open CCMonomorphic
|
||||
|
||||
module Fmt = CCFormat
|
||||
module QC = QCheck
|
||||
module Log = Sidekick_util.Log
|
||||
let spf = Printf.sprintf
|
||||
|
||||
module ZarithZ = Z
|
||||
module Z = Sidekick_zarith.Int
|
||||
|
||||
module Var = struct
|
||||
include CCInt
|
||||
|
||||
let pp out x = Format.fprintf out "X_%d" x
|
||||
|
||||
let rand n : t QC.arbitrary = QC.make ~print:(Fmt.to_string pp) @@ QC.Gen.(0--n)
|
||||
type lit = int
|
||||
let pp_lit = Fmt.int
|
||||
let not_lit i = Some (- i)
|
||||
end
|
||||
|
||||
module Var_map = CCMap.Make(Var)
|
||||
|
||||
module Solver = Sidekick_intsolver.Make(struct
|
||||
module Z = Z
|
||||
type term = Var.t
|
||||
let pp_term = Var.pp
|
||||
type lit = Var.lit
|
||||
let pp_lit = Var.pp_lit
|
||||
module T_map = Var_map
|
||||
end)
|
||||
|
||||
let unwrap_opt_ msg = function
|
||||
| Some x -> x
|
||||
| None -> failwith msg
|
||||
|
||||
let rand_n low n : Z.t QC.arbitrary =
|
||||
QC.map ~rev:ZarithZ.to_int Z.of_int QC.(low -- n)
|
||||
|
||||
let rand_z = rand_n (-1000) 30_000
|
||||
|
||||
module Step = struct
|
||||
module G = QC.Gen
|
||||
|
||||
type linexp = (Z.t * Var.t) list
|
||||
|
||||
type t =
|
||||
| S_new_var of Var.t
|
||||
| S_define of Var.t * (Z.t * Var.t) list
|
||||
| S_leq of linexp * Z.t
|
||||
| S_lt of linexp * Z.t
|
||||
| S_eq of linexp * Z.t
|
||||
|
||||
let pp_le out (le:linexp) =
|
||||
let pp_pair out (n,x) =
|
||||
if Z.equal Z.one n then Var.pp out x
|
||||
else Fmt.fprintf out "%a . %a" Z.pp n Var.pp x in
|
||||
Fmt.fprintf out "(@[%a@])"
|
||||
Fmt.(list ~sep:(return " +@ ") pp_pair) le
|
||||
|
||||
let pp_ out = function
|
||||
| S_new_var v -> Fmt.fprintf out "(@[new-var %a@])" Var.pp v
|
||||
| S_define (v,le) -> Fmt.fprintf out "(@[define %a@ := %a@])" Var.pp v pp_le le
|
||||
| S_leq (le,n) -> Fmt.fprintf out "(@[upper %a <= %a@])" pp_le le Z.pp n
|
||||
| S_lt (le,n) -> Fmt.fprintf out "(@[upper %a < %a@])" pp_le le Z.pp n
|
||||
| S_eq (le,n) -> Fmt.fprintf out "(@[lower %a > %a@])" pp_le le Z.pp n
|
||||
|
||||
(* check that a sequence is well formed *)
|
||||
let well_formed (l:t list) : bool =
|
||||
let rec aux vars = function
|
||||
| [] -> true
|
||||
| S_new_var v :: tl ->
|
||||
not (List.mem v vars) && aux (v::vars) tl
|
||||
| (S_leq (le,_) | S_lt (le,_) | S_eq (le,_)) :: tl ->
|
||||
List.for_all (fun (_,x) -> List.mem x vars) le && aux vars tl
|
||||
| S_define (x,le) :: tl->
|
||||
not (List.mem x vars) &&
|
||||
List.for_all (fun (_,y) -> List.mem y vars) le &&
|
||||
aux (x::vars) tl
|
||||
in
|
||||
aux [] l
|
||||
|
||||
let shrink_step self =
|
||||
let module S = QC.Shrink in
|
||||
match self with
|
||||
| S_new_var _
|
||||
| S_leq _ | S_lt _ | S_eq _ -> QC.Iter.empty
|
||||
| S_define (x, le) ->
|
||||
let open QC.Iter in
|
||||
let* le = S.list le in
|
||||
if List.length le >= 2 then return (S_define (x,le)) else empty
|
||||
|
||||
let rand_steps (n:int) : t list QC.Gen.t =
|
||||
let open G in
|
||||
let rec aux n vars acc =
|
||||
if n<=0 then return (List.rev acc)
|
||||
else (
|
||||
let gen_linexp =
|
||||
let* vars' = G.shuffle_l vars in
|
||||
let* n = 1 -- List.length vars' in
|
||||
let vars' = CCList.take n vars' in
|
||||
assert (List.length vars' = n);
|
||||
let* coeffs = list_repeat n rand_z.gen in
|
||||
return (List.combine coeffs vars')
|
||||
in
|
||||
let* vars, proof_rule =
|
||||
frequency @@ List.flatten [
|
||||
(* add a constraint *)
|
||||
(match vars with
|
||||
| [] -> []
|
||||
| _ ->
|
||||
let gen =
|
||||
let+ le = gen_linexp
|
||||
and+ kind = oneofl [`Leq;`Lt;`Eq]
|
||||
and+ n = rand_z.QC.gen in
|
||||
vars, (match kind with
|
||||
| `Lt -> S_lt(le,n)
|
||||
| `Leq -> S_leq(le,n)
|
||||
| `Eq -> S_eq(le,n)
|
||||
)
|
||||
in
|
||||
[6, gen]);
|
||||
(* make a new non-basic var *)
|
||||
(let gen =
|
||||
let v = List.length vars in
|
||||
return ((v::vars), S_new_var v)
|
||||
in
|
||||
[2, gen]);
|
||||
(* make a definition *)
|
||||
(if List.length vars>2
|
||||
then (
|
||||
let v = List.length vars in
|
||||
let gen =
|
||||
let+ le = gen_linexp in
|
||||
v::vars, S_define (v, le)
|
||||
in
|
||||
[5, gen]
|
||||
) else []);
|
||||
]
|
||||
in
|
||||
aux (n-1) vars (proof_rule::acc)
|
||||
)
|
||||
in
|
||||
aux n [] []
|
||||
|
||||
(* shrink a list but keep it well formed *)
|
||||
let shrink : t list QC.Shrink.t =
|
||||
QC.Shrink.(filter well_formed @@ list ~shrink:shrink_step)
|
||||
|
||||
let gen_for n1 n2 =
|
||||
let open G in
|
||||
assert (n1 < n2);
|
||||
let* n = n1 -- n2 in
|
||||
rand_steps n
|
||||
|
||||
let rand_for n1 n2 : t list QC.arbitrary =
|
||||
let print = Fmt.to_string (Fmt.Dump.list pp_) in
|
||||
QC.make ~shrink ~print (gen_for n1 n2)
|
||||
|
||||
let rand : t list QC.arbitrary = rand_for 1 100
|
||||
end
|
||||
|
||||
let on_propagate _ ~reason:_ = ()
|
||||
|
||||
(* add a single proof_rule to the solvere *)
|
||||
let add_step solver (s:Step.t) : unit =
|
||||
begin match s with
|
||||
| Step.S_new_var _v -> ()
|
||||
| Step.S_leq (le,n) ->
|
||||
Solver.assert_ solver le Solver.Op.Leq n ~lit:0
|
||||
| Step.S_lt (le,n) ->
|
||||
Solver.assert_ solver le Solver.Op.Lt n ~lit:0
|
||||
| Step.S_eq (le,n) ->
|
||||
Solver.assert_ solver le Solver.Op.Eq n ~lit:0
|
||||
| Step.S_define (x,le) ->
|
||||
Solver.define solver x le
|
||||
end
|
||||
|
||||
let add_steps ?(f=fun()->()) (solver:Solver.t) l : unit =
|
||||
f();
|
||||
List.iter
|
||||
(fun s -> add_step solver s; f())
|
||||
l
|
||||
|
||||
(* is this solver's state sat? *)
|
||||
let check_solver_is_sat solver : bool =
|
||||
match Solver.check solver with
|
||||
| Solver.Sat _ -> true
|
||||
| Solver.Unsat _ -> false
|
||||
|
||||
(* is this problem sat? *)
|
||||
let check_pb_is_sat pb : bool =
|
||||
let solver = Solver.create() in
|
||||
add_steps solver pb;
|
||||
check_solver_is_sat solver
|
||||
|
||||
(* basic debug printer for Q.t *)
|
||||
let str_z n = ZarithZ.to_string n
|
||||
|
||||
let prop_sound ?(inv=false) pb =
|
||||
let solver = Solver.create () in
|
||||
begin match
|
||||
add_steps solver pb;
|
||||
Solver.check solver
|
||||
with
|
||||
| Sat model ->
|
||||
|
||||
let get_val v =
|
||||
match Solver.Model.eval model v with
|
||||
| Some n -> n
|
||||
| None -> assert false
|
||||
in
|
||||
|
||||
let eval_le le =
|
||||
List.fold_left (fun s (n,y) -> Z.(s + n * get_val y)) Z.zero le
|
||||
in
|
||||
|
||||
let check_step s =
|
||||
(try
|
||||
if inv then Solver._check_invariants solver;
|
||||
match s with
|
||||
| Step.S_new_var _ -> ()
|
||||
| Step.S_define (x, le) ->
|
||||
let v_x = get_val x in
|
||||
let v_le = eval_le le in
|
||||
if Z.(v_x <> v_le) then (
|
||||
failwith (spf "bad def (X_%d): val(x)=%s, val(expr)=%s" x (str_z v_x)(str_z v_le))
|
||||
);
|
||||
| Step.S_lt (x, n) ->
|
||||
let v_x = eval_le x in
|
||||
if Z.(v_x >= n) then failwith (spf "val=%s, n=%s"(str_z v_x)(str_z n))
|
||||
| Step.S_leq (x, n) ->
|
||||
let v_x = eval_le x in
|
||||
if Z.(v_x > n) then failwith (spf "val=%s, n=%s"(str_z v_x)(str_z n))
|
||||
| Step.S_eq (x, n) ->
|
||||
let v_x = eval_le x in
|
||||
if Z.(v_x <> n) then failwith (spf "val=%s, n=%s"(str_z v_x)(str_z n))
|
||||
with e ->
|
||||
QC.Test.fail_reportf "proof_rule failed: %a@.exn:@.%s@."
|
||||
Step.pp_ s (Printexc.to_string e)
|
||||
);
|
||||
if inv then Solver._check_invariants solver;
|
||||
true
|
||||
in
|
||||
List.for_all check_step pb
|
||||
|
||||
| Solver.Unsat _cert ->
|
||||
(* FIXME:
|
||||
Solver._check_cert cert;
|
||||
*)
|
||||
true
|
||||
end
|
||||
|
||||
(* a bunch of useful stats for a problem *)
|
||||
let steps_stats = [
|
||||
"n-define", Step.(List.fold_left (fun n -> function S_define _ -> n+1 | _->n) 0);
|
||||
"n-bnd",
|
||||
Step.(List.fold_left
|
||||
(fun n -> function (S_leq _ | S_lt _ | S_eq _) -> n+1 | _->n) 0);
|
||||
"n-vars",
|
||||
Step.(List.fold_left
|
||||
(fun n -> function S_define _ | S_new_var _ -> n+1 | _ -> n) 0);
|
||||
]
|
||||
|
||||
let enable_stats =
|
||||
match Sys.getenv_opt "TEST_STAT" with Some("1"|"true") -> true | _ -> false
|
||||
|
||||
let set_stats_maybe ar =
|
||||
if enable_stats then QC.set_stats steps_stats ar else ar
|
||||
|
||||
let check_sound =
|
||||
let ar =
|
||||
Step.(rand_for 0 300)
|
||||
|> QC.set_collect (fun pb -> if check_pb_is_sat pb then "sat" else "unsat")
|
||||
|> set_stats_maybe
|
||||
in
|
||||
QC.Test.make ~long_factor:10 ~count:500 ~name:"solver2_sound" ar prop_sound
|
||||
|
||||
let prop_backtrack pb =
|
||||
let solver = Solver.create () in
|
||||
let stack = Stack.create() in
|
||||
let res = ref true in
|
||||
begin try
|
||||
List.iter
|
||||
(fun s ->
|
||||
let is_sat = check_solver_is_sat solver in
|
||||
Solver.push_level solver;
|
||||
Stack.push is_sat stack;
|
||||
if not is_sat then (res := false; raise Exit);
|
||||
add_step solver s;
|
||||
)
|
||||
pb;
|
||||
with Exit -> ()
|
||||
end;
|
||||
res := !res && check_solver_is_sat solver;
|
||||
Log.debugf 50 (fun k->k "res=%b, expected=%b" !res (check_pb_is_sat pb));
|
||||
assert CCBool.(equal !res (check_pb_is_sat pb));
|
||||
(* now backtrack and check at each level *)
|
||||
while not (Stack.is_empty stack) do
|
||||
let res = Stack.pop stack in
|
||||
Solver.pop_levels solver 1;
|
||||
assert CCBool.(equal res (check_solver_is_sat solver))
|
||||
done;
|
||||
true
|
||||
|
||||
let check_backtrack =
|
||||
let ar =
|
||||
Step.(rand_for 0 300)
|
||||
|> QC.set_collect (fun pb -> if check_pb_is_sat pb then "sat" else "unsat")
|
||||
|> set_stats_maybe
|
||||
in
|
||||
QC.Test.make
|
||||
~long_factor:10 ~count:200 ~name:"solver2_backtrack"
|
||||
ar prop_backtrack
|
||||
|
||||
let check_scalable =
|
||||
let prop pb =
|
||||
let solver = Solver.create () in
|
||||
add_steps solver pb;
|
||||
ignore (Solver.check solver : Solver.result);
|
||||
true
|
||||
in
|
||||
let ar =
|
||||
Step.(rand_for 3_000 5_000)
|
||||
|> QC.set_collect (fun pb -> if check_pb_is_sat pb then "sat" else "unsat")
|
||||
|> set_stats_maybe
|
||||
in
|
||||
QC.Test.make ~long_factor:2 ~count:10 ~name:"solver2_scalable"
|
||||
ar prop
|
||||
|
||||
let props = [
|
||||
check_sound;
|
||||
check_backtrack;
|
||||
check_scalable;
|
||||
]
|
||||
|
||||
(* regression tests *)
|
||||
|
||||
module Reg = struct
|
||||
let alco_mk name f = name, `Quick, f
|
||||
|
||||
let reg_prop_sound ?inv name l =
|
||||
alco_mk name @@ fun () ->
|
||||
if not (prop_sound ?inv l) then Alcotest.fail "fail";
|
||||
()
|
||||
|
||||
let reg_prop_backtrack name l =
|
||||
alco_mk name @@ fun () ->
|
||||
if not (prop_backtrack l) then Alcotest.fail "fail";
|
||||
()
|
||||
|
||||
open Step
|
||||
let tests = [
|
||||
]
|
||||
end
|
||||
|
||||
let tests =
|
||||
"solver", List.flatten [ Reg.tests ]
|
||||
Loading…
Add table
Reference in a new issue