mirror of
https://github.com/c-cube/sidekick.git
synced 2025-12-06 11:15:43 -05:00
359 lines
9.7 KiB
OCaml
359 lines
9.7 KiB
OCaml
|
|
open CCMonomorphic
|
|
|
|
module Fmt = CCFormat
|
|
module QC = QCheck
|
|
module Log = Sidekick_util.Log
|
|
let spf = Printf.sprintf
|
|
|
|
module ZarithZ = Z
|
|
module Z = Sidekick_zarith.Int
|
|
|
|
module Var = struct
|
|
include CCInt
|
|
|
|
let pp out x = Format.fprintf out "X_%d" x
|
|
|
|
let rand n : t QC.arbitrary = QC.make ~print:(Fmt.to_string pp) @@ QC.Gen.(0--n)
|
|
type lit = int
|
|
let pp_lit = Fmt.int
|
|
let not_lit i = Some (- i)
|
|
end
|
|
|
|
module Var_map = CCMap.Make(Var)
|
|
|
|
module Solver = Sidekick_intsolver.Make(struct
|
|
module Z = Z
|
|
type term = Var.t
|
|
let pp_term = Var.pp
|
|
type lit = Var.lit
|
|
let pp_lit = Var.pp_lit
|
|
module T_map = Var_map
|
|
end)
|
|
|
|
let unwrap_opt_ msg = function
|
|
| Some x -> x
|
|
| None -> failwith msg
|
|
|
|
let rand_n low n : Z.t QC.arbitrary =
|
|
QC.map ~rev:ZarithZ.to_int Z.of_int QC.(low -- n)
|
|
|
|
let rand_z = rand_n (-1000) 30_000
|
|
|
|
module Step = struct
|
|
module G = QC.Gen
|
|
|
|
type linexp = (Z.t * Var.t) list
|
|
|
|
type t =
|
|
| S_new_var of Var.t
|
|
| S_define of Var.t * (Z.t * Var.t) list
|
|
| S_leq of linexp * Z.t
|
|
| S_lt of linexp * Z.t
|
|
| S_eq of linexp * Z.t
|
|
|
|
let pp_le out (le:linexp) =
|
|
let pp_pair out (n,x) =
|
|
if Z.equal Z.one n then Var.pp out x
|
|
else Fmt.fprintf out "%a . %a" Z.pp n Var.pp x in
|
|
Fmt.fprintf out "(@[%a@])"
|
|
Fmt.(list ~sep:(return " +@ ") pp_pair) le
|
|
|
|
let pp_ out = function
|
|
| S_new_var v -> Fmt.fprintf out "(@[new-var %a@])" Var.pp v
|
|
| S_define (v,le) -> Fmt.fprintf out "(@[define %a@ := %a@])" Var.pp v pp_le le
|
|
| S_leq (le,n) -> Fmt.fprintf out "(@[upper %a <= %a@])" pp_le le Z.pp n
|
|
| S_lt (le,n) -> Fmt.fprintf out "(@[upper %a < %a@])" pp_le le Z.pp n
|
|
| S_eq (le,n) -> Fmt.fprintf out "(@[lower %a > %a@])" pp_le le Z.pp n
|
|
|
|
(* check that a sequence is well formed *)
|
|
let well_formed (l:t list) : bool =
|
|
let rec aux vars = function
|
|
| [] -> true
|
|
| S_new_var v :: tl ->
|
|
not (List.mem v vars) && aux (v::vars) tl
|
|
| (S_leq (le,_) | S_lt (le,_) | S_eq (le,_)) :: tl ->
|
|
List.for_all (fun (_,x) -> List.mem x vars) le && aux vars tl
|
|
| S_define (x,le) :: tl->
|
|
not (List.mem x vars) &&
|
|
List.for_all (fun (_,y) -> List.mem y vars) le &&
|
|
aux (x::vars) tl
|
|
in
|
|
aux [] l
|
|
|
|
let shrink_step self =
|
|
let module S = QC.Shrink in
|
|
match self with
|
|
| S_new_var _
|
|
| S_leq _ | S_lt _ | S_eq _ -> QC.Iter.empty
|
|
| S_define (x, le) ->
|
|
let open QC.Iter in
|
|
let* le = S.list le in
|
|
if List.length le >= 2 then return (S_define (x,le)) else empty
|
|
|
|
let rand_steps (n:int) : t list QC.Gen.t =
|
|
let open G in
|
|
let rec aux n vars acc =
|
|
if n<=0 then return (List.rev acc)
|
|
else (
|
|
let gen_linexp =
|
|
let* vars' = G.shuffle_l vars in
|
|
let* n = 1 -- List.length vars' in
|
|
let vars' = CCList.take n vars' in
|
|
assert (List.length vars' = n);
|
|
let* coeffs = list_repeat n rand_z.gen in
|
|
return (List.combine coeffs vars')
|
|
in
|
|
let* vars, proof_rule =
|
|
frequency @@ List.flatten [
|
|
(* add a constraint *)
|
|
(match vars with
|
|
| [] -> []
|
|
| _ ->
|
|
let gen =
|
|
let+ le = gen_linexp
|
|
and+ kind = oneofl [`Leq;`Lt;`Eq]
|
|
and+ n = rand_z.QC.gen in
|
|
vars, (match kind with
|
|
| `Lt -> S_lt(le,n)
|
|
| `Leq -> S_leq(le,n)
|
|
| `Eq -> S_eq(le,n)
|
|
)
|
|
in
|
|
[6, gen]);
|
|
(* make a new non-basic var *)
|
|
(let gen =
|
|
let v = List.length vars in
|
|
return ((v::vars), S_new_var v)
|
|
in
|
|
[2, gen]);
|
|
(* make a definition *)
|
|
(if List.length vars>2
|
|
then (
|
|
let v = List.length vars in
|
|
let gen =
|
|
let+ le = gen_linexp in
|
|
v::vars, S_define (v, le)
|
|
in
|
|
[5, gen]
|
|
) else []);
|
|
]
|
|
in
|
|
aux (n-1) vars (proof_rule::acc)
|
|
)
|
|
in
|
|
aux n [] []
|
|
|
|
(* shrink a list but keep it well formed *)
|
|
let shrink : t list QC.Shrink.t =
|
|
QC.Shrink.(filter well_formed @@ list ~shrink:shrink_step)
|
|
|
|
let gen_for n1 n2 =
|
|
let open G in
|
|
assert (n1 < n2);
|
|
let* n = n1 -- n2 in
|
|
rand_steps n
|
|
|
|
let rand_for n1 n2 : t list QC.arbitrary =
|
|
let print = Fmt.to_string (Fmt.Dump.list pp_) in
|
|
QC.make ~shrink ~print (gen_for n1 n2)
|
|
|
|
let rand : t list QC.arbitrary = rand_for 1 100
|
|
end
|
|
|
|
let on_propagate _ ~reason:_ = ()
|
|
|
|
(* add a single proof_rule to the solvere *)
|
|
let add_step solver (s:Step.t) : unit =
|
|
begin match s with
|
|
| Step.S_new_var _v -> ()
|
|
| Step.S_leq (le,n) ->
|
|
Solver.assert_ solver le Solver.Op.Leq n ~lit:0
|
|
| Step.S_lt (le,n) ->
|
|
Solver.assert_ solver le Solver.Op.Lt n ~lit:0
|
|
| Step.S_eq (le,n) ->
|
|
Solver.assert_ solver le Solver.Op.Eq n ~lit:0
|
|
| Step.S_define (x,le) ->
|
|
Solver.define solver x le
|
|
end
|
|
|
|
let add_steps ?(f=fun()->()) (solver:Solver.t) l : unit =
|
|
f();
|
|
List.iter
|
|
(fun s -> add_step solver s; f())
|
|
l
|
|
|
|
(* is this solver's state sat? *)
|
|
let check_solver_is_sat solver : bool =
|
|
match Solver.check solver with
|
|
| Solver.Sat _ -> true
|
|
| Solver.Unsat _ -> false
|
|
|
|
(* is this problem sat? *)
|
|
let check_pb_is_sat pb : bool =
|
|
let solver = Solver.create() in
|
|
add_steps solver pb;
|
|
check_solver_is_sat solver
|
|
|
|
(* basic debug printer for Q.t *)
|
|
let str_z n = ZarithZ.to_string n
|
|
|
|
let prop_sound ?(inv=false) pb =
|
|
let solver = Solver.create () in
|
|
begin match
|
|
add_steps solver pb;
|
|
Solver.check solver
|
|
with
|
|
| Sat model ->
|
|
|
|
let get_val v =
|
|
match Solver.Model.eval model v with
|
|
| Some n -> n
|
|
| None -> assert false
|
|
in
|
|
|
|
let eval_le le =
|
|
List.fold_left (fun s (n,y) -> Z.(s + n * get_val y)) Z.zero le
|
|
in
|
|
|
|
let check_step s =
|
|
(try
|
|
if inv then Solver._check_invariants solver;
|
|
match s with
|
|
| Step.S_new_var _ -> ()
|
|
| Step.S_define (x, le) ->
|
|
let v_x = get_val x in
|
|
let v_le = eval_le le in
|
|
if Z.(v_x <> v_le) then (
|
|
failwith (spf "bad def (X_%d): val(x)=%s, val(expr)=%s" x (str_z v_x)(str_z v_le))
|
|
);
|
|
| Step.S_lt (x, n) ->
|
|
let v_x = eval_le x in
|
|
if Z.(v_x >= n) then failwith (spf "val=%s, n=%s"(str_z v_x)(str_z n))
|
|
| Step.S_leq (x, n) ->
|
|
let v_x = eval_le x in
|
|
if Z.(v_x > n) then failwith (spf "val=%s, n=%s"(str_z v_x)(str_z n))
|
|
| Step.S_eq (x, n) ->
|
|
let v_x = eval_le x in
|
|
if Z.(v_x <> n) then failwith (spf "val=%s, n=%s"(str_z v_x)(str_z n))
|
|
with e ->
|
|
QC.Test.fail_reportf "proof_rule failed: %a@.exn:@.%s@."
|
|
Step.pp_ s (Printexc.to_string e)
|
|
);
|
|
if inv then Solver._check_invariants solver;
|
|
true
|
|
in
|
|
List.for_all check_step pb
|
|
|
|
| Solver.Unsat _cert ->
|
|
(* FIXME:
|
|
Solver._check_cert cert;
|
|
*)
|
|
true
|
|
end
|
|
|
|
(* a bunch of useful stats for a problem *)
|
|
let steps_stats = [
|
|
"n-define", Step.(List.fold_left (fun n -> function S_define _ -> n+1 | _->n) 0);
|
|
"n-bnd",
|
|
Step.(List.fold_left
|
|
(fun n -> function (S_leq _ | S_lt _ | S_eq _) -> n+1 | _->n) 0);
|
|
"n-vars",
|
|
Step.(List.fold_left
|
|
(fun n -> function S_define _ | S_new_var _ -> n+1 | _ -> n) 0);
|
|
]
|
|
|
|
let enable_stats =
|
|
match Sys.getenv_opt "TEST_STAT" with Some("1"|"true") -> true | _ -> false
|
|
|
|
let set_stats_maybe ar =
|
|
if enable_stats then QC.set_stats steps_stats ar else ar
|
|
|
|
let check_sound =
|
|
let ar =
|
|
Step.(rand_for 0 300)
|
|
|> QC.set_collect (fun pb -> if check_pb_is_sat pb then "sat" else "unsat")
|
|
|> set_stats_maybe
|
|
in
|
|
QC.Test.make ~long_factor:10 ~count:500 ~name:"solver2_sound" ar prop_sound
|
|
|
|
let prop_backtrack pb =
|
|
let solver = Solver.create () in
|
|
let stack = Stack.create() in
|
|
let res = ref true in
|
|
begin try
|
|
List.iter
|
|
(fun s ->
|
|
let is_sat = check_solver_is_sat solver in
|
|
Solver.push_level solver;
|
|
Stack.push is_sat stack;
|
|
if not is_sat then (res := false; raise Exit);
|
|
add_step solver s;
|
|
)
|
|
pb;
|
|
with Exit -> ()
|
|
end;
|
|
res := !res && check_solver_is_sat solver;
|
|
Log.debugf 50 (fun k->k "res=%b, expected=%b" !res (check_pb_is_sat pb));
|
|
assert CCBool.(equal !res (check_pb_is_sat pb));
|
|
(* now backtrack and check at each level *)
|
|
while not (Stack.is_empty stack) do
|
|
let res = Stack.pop stack in
|
|
Solver.pop_levels solver 1;
|
|
assert CCBool.(equal res (check_solver_is_sat solver))
|
|
done;
|
|
true
|
|
|
|
let check_backtrack =
|
|
let ar =
|
|
Step.(rand_for 0 300)
|
|
|> QC.set_collect (fun pb -> if check_pb_is_sat pb then "sat" else "unsat")
|
|
|> set_stats_maybe
|
|
in
|
|
QC.Test.make
|
|
~long_factor:10 ~count:200 ~name:"solver2_backtrack"
|
|
ar prop_backtrack
|
|
|
|
let check_scalable =
|
|
let prop pb =
|
|
let solver = Solver.create () in
|
|
add_steps solver pb;
|
|
ignore (Solver.check solver : Solver.result);
|
|
true
|
|
in
|
|
let ar =
|
|
Step.(rand_for 3_000 5_000)
|
|
|> QC.set_collect (fun pb -> if check_pb_is_sat pb then "sat" else "unsat")
|
|
|> set_stats_maybe
|
|
in
|
|
QC.Test.make ~long_factor:2 ~count:10 ~name:"solver2_scalable"
|
|
ar prop
|
|
|
|
let props = [
|
|
check_sound;
|
|
check_backtrack;
|
|
check_scalable;
|
|
]
|
|
|
|
(* regression tests *)
|
|
|
|
module Reg = struct
|
|
let alco_mk name f = name, `Quick, f
|
|
|
|
let reg_prop_sound ?inv name l =
|
|
alco_mk name @@ fun () ->
|
|
if not (prop_sound ?inv l) then Alcotest.fail "fail";
|
|
()
|
|
|
|
let reg_prop_backtrack name l =
|
|
alco_mk name @@ fun () ->
|
|
if not (prop_backtrack l) then Alcotest.fail "fail";
|
|
()
|
|
|
|
open Step
|
|
let tests = [
|
|
]
|
|
end
|
|
|
|
let tests =
|
|
"solver", List.flatten [ Reg.tests ]
|