Module Solver.P
type term= T.Term.ttype tytype ttype hres_stephyper-resolution steps: resolution, unit resolution; bool paramodulation, unit bool paramodulation
val p : t -> lhs:term -> rhs:term -> hres_stepParamodulation using proof whose conclusion has a literal
lhs=rhs
val pp_lit : lit Sidekick_core.Fmt.printerval lit_a : term -> litval lit_na : term -> litval lit_mk : bool -> term -> litval lit_eq : term -> term -> litval lit_neq : term -> term -> litval lit_not : lit -> litval lit_sign : lit -> bool
val stepc : name:string -> lit list -> t -> composite_stepval deft : term -> term -> composite_stepdefine a (new) atomic term
val is_trivial_refl : t -> boolis this a proof of
|- t=t? This can be used to remove some trivial steps that would build on the proof (e.g. rewriting usingrefl tis useless).
val assertion : term -> tval assertion_c : lit Iter.t -> tval ref_by_name : string -> tval assertion_c_l : lit list -> tval hres_iter : t -> hres_step Iter.t -> tval hres_l : t -> hres_step list -> tval res : pivot:term -> t -> t -> tval res1 : t -> t -> tval refl : term -> tval true_is_true : tval true_neq_false : tval nn : t -> tval cc_lemma : lit list -> tval cc_imply2 : t -> t -> term -> term -> tval cc_imply_l : t list -> term -> term -> tval composite_iter : ?assms:(string * lit) list -> composite_step Iter.t -> tval composite_l : ?assms:(string * lit) list -> composite_step list -> tval sorry : tval sorry_c : lit Iter.t -> tval sorry_c_l : lit list -> tval default : tval pp_debug : sharing:bool -> t Sidekick_core.Fmt.printer
module Quip : sig ... end