sidekick/src/base/Proof_dummy.ml

76 lines
1.5 KiB
OCaml

open Base_types
type lit = Lit.t
type term = Term.t
module Arg = struct
type nonrec rule = unit
type nonrec step_id = unit
module Step_vec = Vec_unit
let dummy_step_id = ()
end
include Sidekick_proof_trace_dummy.Make (Arg)
type rule = A.rule
type step_id = A.step_id
let create () : t = ()
let with_proof _ _ = ()
module Rule_sat = struct
type nonrec rule = rule
type nonrec step_id = step_id
type nonrec lit = lit
let sat_redundant_clause _ ~hyps:_ = ()
let sat_input_clause _ = ()
let sat_unsat_core _ = ()
end
module Rule_core = struct
type nonrec rule = rule
type nonrec step_id = step_id
type nonrec lit = lit
type nonrec term = term
let define_term _ _ = ()
let proof_p1 _ _ = ()
let proof_r1 _ _ = ()
let proof_res ~pivot:_ _ _ = ()
let lemma_preprocess _ _ ~using:_ = ()
let lemma_true _ = ()
let lemma_cc _ = ()
let lemma_rw_clause _ ~res:_ ~using:_ = ()
let with_defs _ _ = ()
end
let lemma_lra _ = ()
module Rule_bool = struct
type nonrec rule = rule
type nonrec lit = lit
let lemma_bool_tauto _ = ()
let lemma_bool_c _ _ = ()
let lemma_bool_equiv _ _ = ()
let lemma_ite_true ~ite:_ = ()
let lemma_ite_false ~ite:_ = ()
end
module Rule_data = struct
type nonrec rule = rule
type nonrec lit = lit
type nonrec term = term
let lemma_isa_cstor ~cstor_t:_ _ = ()
let lemma_select_cstor ~cstor_t:_ _ = ()
let lemma_isa_split _ _ = ()
let lemma_isa_sel _ = ()
let lemma_isa_disj _ _ = ()
let lemma_cstor_inj _ _ _ = ()
let lemma_cstor_distinct _ _ = ()
let lemma_acyclicity _ = ()
end